Loading…
A high-granularity digital tracking calorimeter optimized for proton CT
A typical proton CT (pCT) detector comprises a tracking system, used to measure the proton position before and after the imaged object, and an energy/range detector to measure the residual proton range after crossing the object. The Bergen pCT collaboration was established to design and build a prot...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Alme, Johan Barnaföldi, Gergely Gábor Barthel, Rene Borshchov, Vyacheslav Bodova, Tea van den Brink, Anthony Brons, Stephan Chaar, Mamdouh Eikeland, Viljar Nilsen Feofilov, Grigory Genov, Georgi Grimstad, Silje Grøttvik, Ola Slettevoll Helstrup, Håvard Herland, Alf Kristoffer Hilde, Annar Eivindplass Igolkin, Sergey Keidel, Ralf Kobdaj, Chinorat van der Kolk, Naomi Listratenko, Oleksandr Malik, Qasim Waheed Mehendale, Shruti Vineet Meric, Ilker Nesbø, Simon Voigt Odland, Odd Harald Papp, Gábor Peitzmann, Thomas Pettersen, Helge Egil Seime Piersimoni, Pierluigi Protsenko, Maksym Rehman, Attiq Ur Richter, Matthias Røhrich, Dieter Samnøy, Andreas Tefre Seco, Joao Setterdahl, Lena Shafiee, Hesam Skjolddal, Øistein Jelmert Solheim, Emilie Haugland Songmoolnak, Arnon Sudár, Ákos Sølie, Jarle Rambo Tambave, Ganesh Jagannath Tymchuk, Ihor Ullaland, Kjetil Underdal, Håkon Andreas Varga-Kofarago, Monika Volz, Lennart Wagner, Boris Widerøe, Fredrik Mekki Xiao, RenZheng Yang, Shiming Yokoyama, Hiroki |
description | A typical proton CT (pCT) detector comprises a tracking system, used to measure the proton position before and after the imaged object, and an energy/range detector to measure the residual proton range after crossing the object. The Bergen pCT collaboration was established to design and build a prototype pCT scanner with a high granularity digital tracking calorimeter used as both tracking and energy/range detector. In this work the conceptual design and the layout of the mechanical and electronics implementation, along with Monte Carlo simulations of the new pCT system are reported. The digital tracking calorimeter is a multilayer structure with a lateral aperture of 27 cm × 16.6 cm, made of 41 detector/absorber sandwich layers (calorimeter), with aluminum (3.5 mm) used both as absorber and carrier, and two additional layers used as tracking system (rear trackers) positioned downstream of the imaged object; no tracking upstream the object is included. The rear tracker’s structure only differs from the calorimeter layers for the carrier made of ∼200 μm carbon fleece and carbon paper (carbon-epoxy sandwich), to minimize scattering. Each sensitive layer consists of 108 ALICE pixel detector (ALPIDE) chip sensors (developed for ALICE, CERN) bonded on a polyimide flex and subsequently bonded to a larger flexible printed circuit board. Beam tests tailored to the pCT operation have been performed using high-energetic (50–220 MeV/u) proton and ion beams at the Heidelberg Ion-Beam Therapy Center (HIT) in Germany. These tests proved the ALPIDE response independent of occupancy and proportional to the particle energy deposition, making the distinction of different ion tracks possible. The read-out electronics is able to handle enough data to acquire a single 2D image in few seconds making the system fast enough to be used in a clinical environment. For the reconstructed images in the modeled Monte Carlo simulation, the water equivalent path length error is lower than 2 mm, and the relative stopping power accuracy is better than 0.4%. Thanks to its ability to detect different types of radiation and its specific design, the pCT scanner can be employed for additional online applications during the treatment, such as in-situ proton range verification. |
format | article |
fullrecord | <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_2756915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_2756915</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_27569153</originalsourceid><addsrcrecordid>eNqNyjsOwjAMANAsDAi4gzlAJVIUKkZU8TlA98hK09QijSvXDHB6Fg7A9Ja3NvcLjJTGKgmWV0YhfUNPiRQzqGB4UkkQMLPQFDUK8Kw00Sf2MLDALKxcoO22ZjVgXuLu58bsb9eufVRBaFEqvrCgt7Z2B1837nS27vjP-QJwvDO9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A high-granularity digital tracking calorimeter optimized for proton CT</title><source>NORA - Norwegian Open Research Archives</source><creator>Alme, Johan ; Barnaföldi, Gergely Gábor ; Barthel, Rene ; Borshchov, Vyacheslav ; Bodova, Tea ; van den Brink, Anthony ; Brons, Stephan ; Chaar, Mamdouh ; Eikeland, Viljar Nilsen ; Feofilov, Grigory ; Genov, Georgi ; Grimstad, Silje ; Grøttvik, Ola Slettevoll ; Helstrup, Håvard ; Herland, Alf Kristoffer ; Hilde, Annar Eivindplass ; Igolkin, Sergey ; Keidel, Ralf ; Kobdaj, Chinorat ; van der Kolk, Naomi ; Listratenko, Oleksandr ; Malik, Qasim Waheed ; Mehendale, Shruti Vineet ; Meric, Ilker ; Nesbø, Simon Voigt ; Odland, Odd Harald ; Papp, Gábor ; Peitzmann, Thomas ; Pettersen, Helge Egil Seime ; Piersimoni, Pierluigi ; Protsenko, Maksym ; Rehman, Attiq Ur ; Richter, Matthias ; Røhrich, Dieter ; Samnøy, Andreas Tefre ; Seco, Joao ; Setterdahl, Lena ; Shafiee, Hesam ; Skjolddal, Øistein Jelmert ; Solheim, Emilie Haugland ; Songmoolnak, Arnon ; Sudár, Ákos ; Sølie, Jarle Rambo ; Tambave, Ganesh Jagannath ; Tymchuk, Ihor ; Ullaland, Kjetil ; Underdal, Håkon Andreas ; Varga-Kofarago, Monika ; Volz, Lennart ; Wagner, Boris ; Widerøe, Fredrik Mekki ; Xiao, RenZheng ; Yang, Shiming ; Yokoyama, Hiroki</creator><creatorcontrib>Alme, Johan ; Barnaföldi, Gergely Gábor ; Barthel, Rene ; Borshchov, Vyacheslav ; Bodova, Tea ; van den Brink, Anthony ; Brons, Stephan ; Chaar, Mamdouh ; Eikeland, Viljar Nilsen ; Feofilov, Grigory ; Genov, Georgi ; Grimstad, Silje ; Grøttvik, Ola Slettevoll ; Helstrup, Håvard ; Herland, Alf Kristoffer ; Hilde, Annar Eivindplass ; Igolkin, Sergey ; Keidel, Ralf ; Kobdaj, Chinorat ; van der Kolk, Naomi ; Listratenko, Oleksandr ; Malik, Qasim Waheed ; Mehendale, Shruti Vineet ; Meric, Ilker ; Nesbø, Simon Voigt ; Odland, Odd Harald ; Papp, Gábor ; Peitzmann, Thomas ; Pettersen, Helge Egil Seime ; Piersimoni, Pierluigi ; Protsenko, Maksym ; Rehman, Attiq Ur ; Richter, Matthias ; Røhrich, Dieter ; Samnøy, Andreas Tefre ; Seco, Joao ; Setterdahl, Lena ; Shafiee, Hesam ; Skjolddal, Øistein Jelmert ; Solheim, Emilie Haugland ; Songmoolnak, Arnon ; Sudár, Ákos ; Sølie, Jarle Rambo ; Tambave, Ganesh Jagannath ; Tymchuk, Ihor ; Ullaland, Kjetil ; Underdal, Håkon Andreas ; Varga-Kofarago, Monika ; Volz, Lennart ; Wagner, Boris ; Widerøe, Fredrik Mekki ; Xiao, RenZheng ; Yang, Shiming ; Yokoyama, Hiroki</creatorcontrib><description>A typical proton CT (pCT) detector comprises a tracking system, used to measure the proton position before and after the imaged object, and an energy/range detector to measure the residual proton range after crossing the object. The Bergen pCT collaboration was established to design and build a prototype pCT scanner with a high granularity digital tracking calorimeter used as both tracking and energy/range detector. In this work the conceptual design and the layout of the mechanical and electronics implementation, along with Monte Carlo simulations of the new pCT system are reported. The digital tracking calorimeter is a multilayer structure with a lateral aperture of 27 cm × 16.6 cm, made of 41 detector/absorber sandwich layers (calorimeter), with aluminum (3.5 mm) used both as absorber and carrier, and two additional layers used as tracking system (rear trackers) positioned downstream of the imaged object; no tracking upstream the object is included. The rear tracker’s structure only differs from the calorimeter layers for the carrier made of ∼200 μm carbon fleece and carbon paper (carbon-epoxy sandwich), to minimize scattering. Each sensitive layer consists of 108 ALICE pixel detector (ALPIDE) chip sensors (developed for ALICE, CERN) bonded on a polyimide flex and subsequently bonded to a larger flexible printed circuit board. Beam tests tailored to the pCT operation have been performed using high-energetic (50–220 MeV/u) proton and ion beams at the Heidelberg Ion-Beam Therapy Center (HIT) in Germany. These tests proved the ALPIDE response independent of occupancy and proportional to the particle energy deposition, making the distinction of different ion tracks possible. The read-out electronics is able to handle enough data to acquire a single 2D image in few seconds making the system fast enough to be used in a clinical environment. For the reconstructed images in the modeled Monte Carlo simulation, the water equivalent path length error is lower than 2 mm, and the relative stopping power accuracy is better than 0.4%. Thanks to its ability to detect different types of radiation and its specific design, the pCT scanner can be employed for additional online applications during the treatment, such as in-situ proton range verification.</description><language>eng</language><publisher>Frontiers Media</publisher><creationdate>2020</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26567</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/2756915$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Alme, Johan</creatorcontrib><creatorcontrib>Barnaföldi, Gergely Gábor</creatorcontrib><creatorcontrib>Barthel, Rene</creatorcontrib><creatorcontrib>Borshchov, Vyacheslav</creatorcontrib><creatorcontrib>Bodova, Tea</creatorcontrib><creatorcontrib>van den Brink, Anthony</creatorcontrib><creatorcontrib>Brons, Stephan</creatorcontrib><creatorcontrib>Chaar, Mamdouh</creatorcontrib><creatorcontrib>Eikeland, Viljar Nilsen</creatorcontrib><creatorcontrib>Feofilov, Grigory</creatorcontrib><creatorcontrib>Genov, Georgi</creatorcontrib><creatorcontrib>Grimstad, Silje</creatorcontrib><creatorcontrib>Grøttvik, Ola Slettevoll</creatorcontrib><creatorcontrib>Helstrup, Håvard</creatorcontrib><creatorcontrib>Herland, Alf Kristoffer</creatorcontrib><creatorcontrib>Hilde, Annar Eivindplass</creatorcontrib><creatorcontrib>Igolkin, Sergey</creatorcontrib><creatorcontrib>Keidel, Ralf</creatorcontrib><creatorcontrib>Kobdaj, Chinorat</creatorcontrib><creatorcontrib>van der Kolk, Naomi</creatorcontrib><creatorcontrib>Listratenko, Oleksandr</creatorcontrib><creatorcontrib>Malik, Qasim Waheed</creatorcontrib><creatorcontrib>Mehendale, Shruti Vineet</creatorcontrib><creatorcontrib>Meric, Ilker</creatorcontrib><creatorcontrib>Nesbø, Simon Voigt</creatorcontrib><creatorcontrib>Odland, Odd Harald</creatorcontrib><creatorcontrib>Papp, Gábor</creatorcontrib><creatorcontrib>Peitzmann, Thomas</creatorcontrib><creatorcontrib>Pettersen, Helge Egil Seime</creatorcontrib><creatorcontrib>Piersimoni, Pierluigi</creatorcontrib><creatorcontrib>Protsenko, Maksym</creatorcontrib><creatorcontrib>Rehman, Attiq Ur</creatorcontrib><creatorcontrib>Richter, Matthias</creatorcontrib><creatorcontrib>Røhrich, Dieter</creatorcontrib><creatorcontrib>Samnøy, Andreas Tefre</creatorcontrib><creatorcontrib>Seco, Joao</creatorcontrib><creatorcontrib>Setterdahl, Lena</creatorcontrib><creatorcontrib>Shafiee, Hesam</creatorcontrib><creatorcontrib>Skjolddal, Øistein Jelmert</creatorcontrib><creatorcontrib>Solheim, Emilie Haugland</creatorcontrib><creatorcontrib>Songmoolnak, Arnon</creatorcontrib><creatorcontrib>Sudár, Ákos</creatorcontrib><creatorcontrib>Sølie, Jarle Rambo</creatorcontrib><creatorcontrib>Tambave, Ganesh Jagannath</creatorcontrib><creatorcontrib>Tymchuk, Ihor</creatorcontrib><creatorcontrib>Ullaland, Kjetil</creatorcontrib><creatorcontrib>Underdal, Håkon Andreas</creatorcontrib><creatorcontrib>Varga-Kofarago, Monika</creatorcontrib><creatorcontrib>Volz, Lennart</creatorcontrib><creatorcontrib>Wagner, Boris</creatorcontrib><creatorcontrib>Widerøe, Fredrik Mekki</creatorcontrib><creatorcontrib>Xiao, RenZheng</creatorcontrib><creatorcontrib>Yang, Shiming</creatorcontrib><creatorcontrib>Yokoyama, Hiroki</creatorcontrib><title>A high-granularity digital tracking calorimeter optimized for proton CT</title><description>A typical proton CT (pCT) detector comprises a tracking system, used to measure the proton position before and after the imaged object, and an energy/range detector to measure the residual proton range after crossing the object. The Bergen pCT collaboration was established to design and build a prototype pCT scanner with a high granularity digital tracking calorimeter used as both tracking and energy/range detector. In this work the conceptual design and the layout of the mechanical and electronics implementation, along with Monte Carlo simulations of the new pCT system are reported. The digital tracking calorimeter is a multilayer structure with a lateral aperture of 27 cm × 16.6 cm, made of 41 detector/absorber sandwich layers (calorimeter), with aluminum (3.5 mm) used both as absorber and carrier, and two additional layers used as tracking system (rear trackers) positioned downstream of the imaged object; no tracking upstream the object is included. The rear tracker’s structure only differs from the calorimeter layers for the carrier made of ∼200 μm carbon fleece and carbon paper (carbon-epoxy sandwich), to minimize scattering. Each sensitive layer consists of 108 ALICE pixel detector (ALPIDE) chip sensors (developed for ALICE, CERN) bonded on a polyimide flex and subsequently bonded to a larger flexible printed circuit board. Beam tests tailored to the pCT operation have been performed using high-energetic (50–220 MeV/u) proton and ion beams at the Heidelberg Ion-Beam Therapy Center (HIT) in Germany. These tests proved the ALPIDE response independent of occupancy and proportional to the particle energy deposition, making the distinction of different ion tracks possible. The read-out electronics is able to handle enough data to acquire a single 2D image in few seconds making the system fast enough to be used in a clinical environment. For the reconstructed images in the modeled Monte Carlo simulation, the water equivalent path length error is lower than 2 mm, and the relative stopping power accuracy is better than 0.4%. Thanks to its ability to detect different types of radiation and its specific design, the pCT scanner can be employed for additional online applications during the treatment, such as in-situ proton range verification.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqNyjsOwjAMANAsDAi4gzlAJVIUKkZU8TlA98hK09QijSvXDHB6Fg7A9Ja3NvcLjJTGKgmWV0YhfUNPiRQzqGB4UkkQMLPQFDUK8Kw00Sf2MLDALKxcoO22ZjVgXuLu58bsb9eufVRBaFEqvrCgt7Z2B1837nS27vjP-QJwvDO9</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Alme, Johan</creator><creator>Barnaföldi, Gergely Gábor</creator><creator>Barthel, Rene</creator><creator>Borshchov, Vyacheslav</creator><creator>Bodova, Tea</creator><creator>van den Brink, Anthony</creator><creator>Brons, Stephan</creator><creator>Chaar, Mamdouh</creator><creator>Eikeland, Viljar Nilsen</creator><creator>Feofilov, Grigory</creator><creator>Genov, Georgi</creator><creator>Grimstad, Silje</creator><creator>Grøttvik, Ola Slettevoll</creator><creator>Helstrup, Håvard</creator><creator>Herland, Alf Kristoffer</creator><creator>Hilde, Annar Eivindplass</creator><creator>Igolkin, Sergey</creator><creator>Keidel, Ralf</creator><creator>Kobdaj, Chinorat</creator><creator>van der Kolk, Naomi</creator><creator>Listratenko, Oleksandr</creator><creator>Malik, Qasim Waheed</creator><creator>Mehendale, Shruti Vineet</creator><creator>Meric, Ilker</creator><creator>Nesbø, Simon Voigt</creator><creator>Odland, Odd Harald</creator><creator>Papp, Gábor</creator><creator>Peitzmann, Thomas</creator><creator>Pettersen, Helge Egil Seime</creator><creator>Piersimoni, Pierluigi</creator><creator>Protsenko, Maksym</creator><creator>Rehman, Attiq Ur</creator><creator>Richter, Matthias</creator><creator>Røhrich, Dieter</creator><creator>Samnøy, Andreas Tefre</creator><creator>Seco, Joao</creator><creator>Setterdahl, Lena</creator><creator>Shafiee, Hesam</creator><creator>Skjolddal, Øistein Jelmert</creator><creator>Solheim, Emilie Haugland</creator><creator>Songmoolnak, Arnon</creator><creator>Sudár, Ákos</creator><creator>Sølie, Jarle Rambo</creator><creator>Tambave, Ganesh Jagannath</creator><creator>Tymchuk, Ihor</creator><creator>Ullaland, Kjetil</creator><creator>Underdal, Håkon Andreas</creator><creator>Varga-Kofarago, Monika</creator><creator>Volz, Lennart</creator><creator>Wagner, Boris</creator><creator>Widerøe, Fredrik Mekki</creator><creator>Xiao, RenZheng</creator><creator>Yang, Shiming</creator><creator>Yokoyama, Hiroki</creator><general>Frontiers Media</general><scope>3HK</scope></search><sort><creationdate>2020</creationdate><title>A high-granularity digital tracking calorimeter optimized for proton CT</title><author>Alme, Johan ; Barnaföldi, Gergely Gábor ; Barthel, Rene ; Borshchov, Vyacheslav ; Bodova, Tea ; van den Brink, Anthony ; Brons, Stephan ; Chaar, Mamdouh ; Eikeland, Viljar Nilsen ; Feofilov, Grigory ; Genov, Georgi ; Grimstad, Silje ; Grøttvik, Ola Slettevoll ; Helstrup, Håvard ; Herland, Alf Kristoffer ; Hilde, Annar Eivindplass ; Igolkin, Sergey ; Keidel, Ralf ; Kobdaj, Chinorat ; van der Kolk, Naomi ; Listratenko, Oleksandr ; Malik, Qasim Waheed ; Mehendale, Shruti Vineet ; Meric, Ilker ; Nesbø, Simon Voigt ; Odland, Odd Harald ; Papp, Gábor ; Peitzmann, Thomas ; Pettersen, Helge Egil Seime ; Piersimoni, Pierluigi ; Protsenko, Maksym ; Rehman, Attiq Ur ; Richter, Matthias ; Røhrich, Dieter ; Samnøy, Andreas Tefre ; Seco, Joao ; Setterdahl, Lena ; Shafiee, Hesam ; Skjolddal, Øistein Jelmert ; Solheim, Emilie Haugland ; Songmoolnak, Arnon ; Sudár, Ákos ; Sølie, Jarle Rambo ; Tambave, Ganesh Jagannath ; Tymchuk, Ihor ; Ullaland, Kjetil ; Underdal, Håkon Andreas ; Varga-Kofarago, Monika ; Volz, Lennart ; Wagner, Boris ; Widerøe, Fredrik Mekki ; Xiao, RenZheng ; Yang, Shiming ; Yokoyama, Hiroki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_27569153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Alme, Johan</creatorcontrib><creatorcontrib>Barnaföldi, Gergely Gábor</creatorcontrib><creatorcontrib>Barthel, Rene</creatorcontrib><creatorcontrib>Borshchov, Vyacheslav</creatorcontrib><creatorcontrib>Bodova, Tea</creatorcontrib><creatorcontrib>van den Brink, Anthony</creatorcontrib><creatorcontrib>Brons, Stephan</creatorcontrib><creatorcontrib>Chaar, Mamdouh</creatorcontrib><creatorcontrib>Eikeland, Viljar Nilsen</creatorcontrib><creatorcontrib>Feofilov, Grigory</creatorcontrib><creatorcontrib>Genov, Georgi</creatorcontrib><creatorcontrib>Grimstad, Silje</creatorcontrib><creatorcontrib>Grøttvik, Ola Slettevoll</creatorcontrib><creatorcontrib>Helstrup, Håvard</creatorcontrib><creatorcontrib>Herland, Alf Kristoffer</creatorcontrib><creatorcontrib>Hilde, Annar Eivindplass</creatorcontrib><creatorcontrib>Igolkin, Sergey</creatorcontrib><creatorcontrib>Keidel, Ralf</creatorcontrib><creatorcontrib>Kobdaj, Chinorat</creatorcontrib><creatorcontrib>van der Kolk, Naomi</creatorcontrib><creatorcontrib>Listratenko, Oleksandr</creatorcontrib><creatorcontrib>Malik, Qasim Waheed</creatorcontrib><creatorcontrib>Mehendale, Shruti Vineet</creatorcontrib><creatorcontrib>Meric, Ilker</creatorcontrib><creatorcontrib>Nesbø, Simon Voigt</creatorcontrib><creatorcontrib>Odland, Odd Harald</creatorcontrib><creatorcontrib>Papp, Gábor</creatorcontrib><creatorcontrib>Peitzmann, Thomas</creatorcontrib><creatorcontrib>Pettersen, Helge Egil Seime</creatorcontrib><creatorcontrib>Piersimoni, Pierluigi</creatorcontrib><creatorcontrib>Protsenko, Maksym</creatorcontrib><creatorcontrib>Rehman, Attiq Ur</creatorcontrib><creatorcontrib>Richter, Matthias</creatorcontrib><creatorcontrib>Røhrich, Dieter</creatorcontrib><creatorcontrib>Samnøy, Andreas Tefre</creatorcontrib><creatorcontrib>Seco, Joao</creatorcontrib><creatorcontrib>Setterdahl, Lena</creatorcontrib><creatorcontrib>Shafiee, Hesam</creatorcontrib><creatorcontrib>Skjolddal, Øistein Jelmert</creatorcontrib><creatorcontrib>Solheim, Emilie Haugland</creatorcontrib><creatorcontrib>Songmoolnak, Arnon</creatorcontrib><creatorcontrib>Sudár, Ákos</creatorcontrib><creatorcontrib>Sølie, Jarle Rambo</creatorcontrib><creatorcontrib>Tambave, Ganesh Jagannath</creatorcontrib><creatorcontrib>Tymchuk, Ihor</creatorcontrib><creatorcontrib>Ullaland, Kjetil</creatorcontrib><creatorcontrib>Underdal, Håkon Andreas</creatorcontrib><creatorcontrib>Varga-Kofarago, Monika</creatorcontrib><creatorcontrib>Volz, Lennart</creatorcontrib><creatorcontrib>Wagner, Boris</creatorcontrib><creatorcontrib>Widerøe, Fredrik Mekki</creatorcontrib><creatorcontrib>Xiao, RenZheng</creatorcontrib><creatorcontrib>Yang, Shiming</creatorcontrib><creatorcontrib>Yokoyama, Hiroki</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alme, Johan</au><au>Barnaföldi, Gergely Gábor</au><au>Barthel, Rene</au><au>Borshchov, Vyacheslav</au><au>Bodova, Tea</au><au>van den Brink, Anthony</au><au>Brons, Stephan</au><au>Chaar, Mamdouh</au><au>Eikeland, Viljar Nilsen</au><au>Feofilov, Grigory</au><au>Genov, Georgi</au><au>Grimstad, Silje</au><au>Grøttvik, Ola Slettevoll</au><au>Helstrup, Håvard</au><au>Herland, Alf Kristoffer</au><au>Hilde, Annar Eivindplass</au><au>Igolkin, Sergey</au><au>Keidel, Ralf</au><au>Kobdaj, Chinorat</au><au>van der Kolk, Naomi</au><au>Listratenko, Oleksandr</au><au>Malik, Qasim Waheed</au><au>Mehendale, Shruti Vineet</au><au>Meric, Ilker</au><au>Nesbø, Simon Voigt</au><au>Odland, Odd Harald</au><au>Papp, Gábor</au><au>Peitzmann, Thomas</au><au>Pettersen, Helge Egil Seime</au><au>Piersimoni, Pierluigi</au><au>Protsenko, Maksym</au><au>Rehman, Attiq Ur</au><au>Richter, Matthias</au><au>Røhrich, Dieter</au><au>Samnøy, Andreas Tefre</au><au>Seco, Joao</au><au>Setterdahl, Lena</au><au>Shafiee, Hesam</au><au>Skjolddal, Øistein Jelmert</au><au>Solheim, Emilie Haugland</au><au>Songmoolnak, Arnon</au><au>Sudár, Ákos</au><au>Sølie, Jarle Rambo</au><au>Tambave, Ganesh Jagannath</au><au>Tymchuk, Ihor</au><au>Ullaland, Kjetil</au><au>Underdal, Håkon Andreas</au><au>Varga-Kofarago, Monika</au><au>Volz, Lennart</au><au>Wagner, Boris</au><au>Widerøe, Fredrik Mekki</au><au>Xiao, RenZheng</au><au>Yang, Shiming</au><au>Yokoyama, Hiroki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high-granularity digital tracking calorimeter optimized for proton CT</atitle><date>2020</date><risdate>2020</risdate><abstract>A typical proton CT (pCT) detector comprises a tracking system, used to measure the proton position before and after the imaged object, and an energy/range detector to measure the residual proton range after crossing the object. The Bergen pCT collaboration was established to design and build a prototype pCT scanner with a high granularity digital tracking calorimeter used as both tracking and energy/range detector. In this work the conceptual design and the layout of the mechanical and electronics implementation, along with Monte Carlo simulations of the new pCT system are reported. The digital tracking calorimeter is a multilayer structure with a lateral aperture of 27 cm × 16.6 cm, made of 41 detector/absorber sandwich layers (calorimeter), with aluminum (3.5 mm) used both as absorber and carrier, and two additional layers used as tracking system (rear trackers) positioned downstream of the imaged object; no tracking upstream the object is included. The rear tracker’s structure only differs from the calorimeter layers for the carrier made of ∼200 μm carbon fleece and carbon paper (carbon-epoxy sandwich), to minimize scattering. Each sensitive layer consists of 108 ALICE pixel detector (ALPIDE) chip sensors (developed for ALICE, CERN) bonded on a polyimide flex and subsequently bonded to a larger flexible printed circuit board. Beam tests tailored to the pCT operation have been performed using high-energetic (50–220 MeV/u) proton and ion beams at the Heidelberg Ion-Beam Therapy Center (HIT) in Germany. These tests proved the ALPIDE response independent of occupancy and proportional to the particle energy deposition, making the distinction of different ion tracks possible. The read-out electronics is able to handle enough data to acquire a single 2D image in few seconds making the system fast enough to be used in a clinical environment. For the reconstructed images in the modeled Monte Carlo simulation, the water equivalent path length error is lower than 2 mm, and the relative stopping power accuracy is better than 0.4%. Thanks to its ability to detect different types of radiation and its specific design, the pCT scanner can be employed for additional online applications during the treatment, such as in-situ proton range verification.</abstract><pub>Frontiers Media</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_cristin_nora_11250_2756915 |
source | NORA - Norwegian Open Research Archives |
title | A high-granularity digital tracking calorimeter optimized for proton CT |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high-granularity%20digital%20tracking%20calorimeter%20optimized%20for%20proton%20CT&rft.au=Alme,%20Johan&rft.date=2020&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_2756915%3C/cristin_3HK%3E%3Cgrp_id%3Ecdi_FETCH-cristin_nora_11250_27569153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |