Loading…

A high-granularity digital tracking calorimeter optimized for proton CT

A typical proton CT (pCT) detector comprises a tracking system, used to measure the proton position before and after the imaged object, and an energy/range detector to measure the residual proton range after crossing the object. The Bergen pCT collaboration was established to design and build a prot...

Full description

Saved in:
Bibliographic Details
Main Authors: Alme, Johan, Barnaföldi, Gergely Gábor, Barthel, Rene, Borshchov, Vyacheslav, Bodova, Tea, van den Brink, Anthony, Brons, Stephan, Chaar, Mamdouh, Eikeland, Viljar Nilsen, Feofilov, Grigory, Genov, Georgi, Grimstad, Silje, Grøttvik, Ola Slettevoll, Helstrup, Håvard, Herland, Alf Kristoffer, Hilde, Annar Eivindplass, Igolkin, Sergey, Keidel, Ralf, Kobdaj, Chinorat, van der Kolk, Naomi, Listratenko, Oleksandr, Malik, Qasim Waheed, Mehendale, Shruti Vineet, Meric, Ilker, Nesbø, Simon Voigt, Odland, Odd Harald, Papp, Gábor, Peitzmann, Thomas, Pettersen, Helge Egil Seime, Piersimoni, Pierluigi, Protsenko, Maksym, Rehman, Attiq Ur, Richter, Matthias, Røhrich, Dieter, Samnøy, Andreas Tefre, Seco, Joao, Setterdahl, Lena, Shafiee, Hesam, Skjolddal, Øistein Jelmert, Solheim, Emilie Haugland, Songmoolnak, Arnon, Sudár, Ákos, Sølie, Jarle Rambo, Tambave, Ganesh Jagannath, Tymchuk, Ihor, Ullaland, Kjetil, Underdal, Håkon Andreas, Varga-Kofarago, Monika, Volz, Lennart, Wagner, Boris, Widerøe, Fredrik Mekki, Xiao, RenZheng, Yang, Shiming, Yokoyama, Hiroki
Format: Article
Language:English
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Alme, Johan
Barnaföldi, Gergely Gábor
Barthel, Rene
Borshchov, Vyacheslav
Bodova, Tea
van den Brink, Anthony
Brons, Stephan
Chaar, Mamdouh
Eikeland, Viljar Nilsen
Feofilov, Grigory
Genov, Georgi
Grimstad, Silje
Grøttvik, Ola Slettevoll
Helstrup, Håvard
Herland, Alf Kristoffer
Hilde, Annar Eivindplass
Igolkin, Sergey
Keidel, Ralf
Kobdaj, Chinorat
van der Kolk, Naomi
Listratenko, Oleksandr
Malik, Qasim Waheed
Mehendale, Shruti Vineet
Meric, Ilker
Nesbø, Simon Voigt
Odland, Odd Harald
Papp, Gábor
Peitzmann, Thomas
Pettersen, Helge Egil Seime
Piersimoni, Pierluigi
Protsenko, Maksym
Rehman, Attiq Ur
Richter, Matthias
Røhrich, Dieter
Samnøy, Andreas Tefre
Seco, Joao
Setterdahl, Lena
Shafiee, Hesam
Skjolddal, Øistein Jelmert
Solheim, Emilie Haugland
Songmoolnak, Arnon
Sudár, Ákos
Sølie, Jarle Rambo
Tambave, Ganesh Jagannath
Tymchuk, Ihor
Ullaland, Kjetil
Underdal, Håkon Andreas
Varga-Kofarago, Monika
Volz, Lennart
Wagner, Boris
Widerøe, Fredrik Mekki
Xiao, RenZheng
Yang, Shiming
Yokoyama, Hiroki
description A typical proton CT (pCT) detector comprises a tracking system, used to measure the proton position before and after the imaged object, and an energy/range detector to measure the residual proton range after crossing the object. The Bergen pCT collaboration was established to design and build a prototype pCT scanner with a high granularity digital tracking calorimeter used as both tracking and energy/range detector. In this work the conceptual design and the layout of the mechanical and electronics implementation, along with Monte Carlo simulations of the new pCT system are reported. The digital tracking calorimeter is a multilayer structure with a lateral aperture of 27 cm × 16.6 cm, made of 41 detector/absorber sandwich layers (calorimeter), with aluminum (3.5 mm) used both as absorber and carrier, and two additional layers used as tracking system (rear trackers) positioned downstream of the imaged object; no tracking upstream the object is included. The rear tracker’s structure only differs from the calorimeter layers for the carrier made of ∼200 μm carbon fleece and carbon paper (carbon-epoxy sandwich), to minimize scattering. Each sensitive layer consists of 108 ALICE pixel detector (ALPIDE) chip sensors (developed for ALICE, CERN) bonded on a polyimide flex and subsequently bonded to a larger flexible printed circuit board. Beam tests tailored to the pCT operation have been performed using high-energetic (50–220 MeV/u) proton and ion beams at the Heidelberg Ion-Beam Therapy Center (HIT) in Germany. These tests proved the ALPIDE response independent of occupancy and proportional to the particle energy deposition, making the distinction of different ion tracks possible. The read-out electronics is able to handle enough data to acquire a single 2D image in few seconds making the system fast enough to be used in a clinical environment. For the reconstructed images in the modeled Monte Carlo simulation, the water equivalent path length error is lower than 2 mm, and the relative stopping power accuracy is better than 0.4%. Thanks to its ability to detect different types of radiation and its specific design, the pCT scanner can be employed for additional online applications during the treatment, such as in-situ proton range verification.
format article
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_2756915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_2756915</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_27569153</originalsourceid><addsrcrecordid>eNqNyjsOwjAMANAsDAi4gzlAJVIUKkZU8TlA98hK09QijSvXDHB6Fg7A9Ja3NvcLjJTGKgmWV0YhfUNPiRQzqGB4UkkQMLPQFDUK8Kw00Sf2MLDALKxcoO22ZjVgXuLu58bsb9eufVRBaFEqvrCgt7Z2B1837nS27vjP-QJwvDO9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A high-granularity digital tracking calorimeter optimized for proton CT</title><source>NORA - Norwegian Open Research Archives</source><creator>Alme, Johan ; Barnaföldi, Gergely Gábor ; Barthel, Rene ; Borshchov, Vyacheslav ; Bodova, Tea ; van den Brink, Anthony ; Brons, Stephan ; Chaar, Mamdouh ; Eikeland, Viljar Nilsen ; Feofilov, Grigory ; Genov, Georgi ; Grimstad, Silje ; Grøttvik, Ola Slettevoll ; Helstrup, Håvard ; Herland, Alf Kristoffer ; Hilde, Annar Eivindplass ; Igolkin, Sergey ; Keidel, Ralf ; Kobdaj, Chinorat ; van der Kolk, Naomi ; Listratenko, Oleksandr ; Malik, Qasim Waheed ; Mehendale, Shruti Vineet ; Meric, Ilker ; Nesbø, Simon Voigt ; Odland, Odd Harald ; Papp, Gábor ; Peitzmann, Thomas ; Pettersen, Helge Egil Seime ; Piersimoni, Pierluigi ; Protsenko, Maksym ; Rehman, Attiq Ur ; Richter, Matthias ; Røhrich, Dieter ; Samnøy, Andreas Tefre ; Seco, Joao ; Setterdahl, Lena ; Shafiee, Hesam ; Skjolddal, Øistein Jelmert ; Solheim, Emilie Haugland ; Songmoolnak, Arnon ; Sudár, Ákos ; Sølie, Jarle Rambo ; Tambave, Ganesh Jagannath ; Tymchuk, Ihor ; Ullaland, Kjetil ; Underdal, Håkon Andreas ; Varga-Kofarago, Monika ; Volz, Lennart ; Wagner, Boris ; Widerøe, Fredrik Mekki ; Xiao, RenZheng ; Yang, Shiming ; Yokoyama, Hiroki</creator><creatorcontrib>Alme, Johan ; Barnaföldi, Gergely Gábor ; Barthel, Rene ; Borshchov, Vyacheslav ; Bodova, Tea ; van den Brink, Anthony ; Brons, Stephan ; Chaar, Mamdouh ; Eikeland, Viljar Nilsen ; Feofilov, Grigory ; Genov, Georgi ; Grimstad, Silje ; Grøttvik, Ola Slettevoll ; Helstrup, Håvard ; Herland, Alf Kristoffer ; Hilde, Annar Eivindplass ; Igolkin, Sergey ; Keidel, Ralf ; Kobdaj, Chinorat ; van der Kolk, Naomi ; Listratenko, Oleksandr ; Malik, Qasim Waheed ; Mehendale, Shruti Vineet ; Meric, Ilker ; Nesbø, Simon Voigt ; Odland, Odd Harald ; Papp, Gábor ; Peitzmann, Thomas ; Pettersen, Helge Egil Seime ; Piersimoni, Pierluigi ; Protsenko, Maksym ; Rehman, Attiq Ur ; Richter, Matthias ; Røhrich, Dieter ; Samnøy, Andreas Tefre ; Seco, Joao ; Setterdahl, Lena ; Shafiee, Hesam ; Skjolddal, Øistein Jelmert ; Solheim, Emilie Haugland ; Songmoolnak, Arnon ; Sudár, Ákos ; Sølie, Jarle Rambo ; Tambave, Ganesh Jagannath ; Tymchuk, Ihor ; Ullaland, Kjetil ; Underdal, Håkon Andreas ; Varga-Kofarago, Monika ; Volz, Lennart ; Wagner, Boris ; Widerøe, Fredrik Mekki ; Xiao, RenZheng ; Yang, Shiming ; Yokoyama, Hiroki</creatorcontrib><description>A typical proton CT (pCT) detector comprises a tracking system, used to measure the proton position before and after the imaged object, and an energy/range detector to measure the residual proton range after crossing the object. The Bergen pCT collaboration was established to design and build a prototype pCT scanner with a high granularity digital tracking calorimeter used as both tracking and energy/range detector. In this work the conceptual design and the layout of the mechanical and electronics implementation, along with Monte Carlo simulations of the new pCT system are reported. The digital tracking calorimeter is a multilayer structure with a lateral aperture of 27 cm × 16.6 cm, made of 41 detector/absorber sandwich layers (calorimeter), with aluminum (3.5 mm) used both as absorber and carrier, and two additional layers used as tracking system (rear trackers) positioned downstream of the imaged object; no tracking upstream the object is included. The rear tracker’s structure only differs from the calorimeter layers for the carrier made of ∼200 μm carbon fleece and carbon paper (carbon-epoxy sandwich), to minimize scattering. Each sensitive layer consists of 108 ALICE pixel detector (ALPIDE) chip sensors (developed for ALICE, CERN) bonded on a polyimide flex and subsequently bonded to a larger flexible printed circuit board. Beam tests tailored to the pCT operation have been performed using high-energetic (50–220 MeV/u) proton and ion beams at the Heidelberg Ion-Beam Therapy Center (HIT) in Germany. These tests proved the ALPIDE response independent of occupancy and proportional to the particle energy deposition, making the distinction of different ion tracks possible. The read-out electronics is able to handle enough data to acquire a single 2D image in few seconds making the system fast enough to be used in a clinical environment. For the reconstructed images in the modeled Monte Carlo simulation, the water equivalent path length error is lower than 2 mm, and the relative stopping power accuracy is better than 0.4%. Thanks to its ability to detect different types of radiation and its specific design, the pCT scanner can be employed for additional online applications during the treatment, such as in-situ proton range verification.</description><language>eng</language><publisher>Frontiers Media</publisher><creationdate>2020</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26567</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/2756915$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Alme, Johan</creatorcontrib><creatorcontrib>Barnaföldi, Gergely Gábor</creatorcontrib><creatorcontrib>Barthel, Rene</creatorcontrib><creatorcontrib>Borshchov, Vyacheslav</creatorcontrib><creatorcontrib>Bodova, Tea</creatorcontrib><creatorcontrib>van den Brink, Anthony</creatorcontrib><creatorcontrib>Brons, Stephan</creatorcontrib><creatorcontrib>Chaar, Mamdouh</creatorcontrib><creatorcontrib>Eikeland, Viljar Nilsen</creatorcontrib><creatorcontrib>Feofilov, Grigory</creatorcontrib><creatorcontrib>Genov, Georgi</creatorcontrib><creatorcontrib>Grimstad, Silje</creatorcontrib><creatorcontrib>Grøttvik, Ola Slettevoll</creatorcontrib><creatorcontrib>Helstrup, Håvard</creatorcontrib><creatorcontrib>Herland, Alf Kristoffer</creatorcontrib><creatorcontrib>Hilde, Annar Eivindplass</creatorcontrib><creatorcontrib>Igolkin, Sergey</creatorcontrib><creatorcontrib>Keidel, Ralf</creatorcontrib><creatorcontrib>Kobdaj, Chinorat</creatorcontrib><creatorcontrib>van der Kolk, Naomi</creatorcontrib><creatorcontrib>Listratenko, Oleksandr</creatorcontrib><creatorcontrib>Malik, Qasim Waheed</creatorcontrib><creatorcontrib>Mehendale, Shruti Vineet</creatorcontrib><creatorcontrib>Meric, Ilker</creatorcontrib><creatorcontrib>Nesbø, Simon Voigt</creatorcontrib><creatorcontrib>Odland, Odd Harald</creatorcontrib><creatorcontrib>Papp, Gábor</creatorcontrib><creatorcontrib>Peitzmann, Thomas</creatorcontrib><creatorcontrib>Pettersen, Helge Egil Seime</creatorcontrib><creatorcontrib>Piersimoni, Pierluigi</creatorcontrib><creatorcontrib>Protsenko, Maksym</creatorcontrib><creatorcontrib>Rehman, Attiq Ur</creatorcontrib><creatorcontrib>Richter, Matthias</creatorcontrib><creatorcontrib>Røhrich, Dieter</creatorcontrib><creatorcontrib>Samnøy, Andreas Tefre</creatorcontrib><creatorcontrib>Seco, Joao</creatorcontrib><creatorcontrib>Setterdahl, Lena</creatorcontrib><creatorcontrib>Shafiee, Hesam</creatorcontrib><creatorcontrib>Skjolddal, Øistein Jelmert</creatorcontrib><creatorcontrib>Solheim, Emilie Haugland</creatorcontrib><creatorcontrib>Songmoolnak, Arnon</creatorcontrib><creatorcontrib>Sudár, Ákos</creatorcontrib><creatorcontrib>Sølie, Jarle Rambo</creatorcontrib><creatorcontrib>Tambave, Ganesh Jagannath</creatorcontrib><creatorcontrib>Tymchuk, Ihor</creatorcontrib><creatorcontrib>Ullaland, Kjetil</creatorcontrib><creatorcontrib>Underdal, Håkon Andreas</creatorcontrib><creatorcontrib>Varga-Kofarago, Monika</creatorcontrib><creatorcontrib>Volz, Lennart</creatorcontrib><creatorcontrib>Wagner, Boris</creatorcontrib><creatorcontrib>Widerøe, Fredrik Mekki</creatorcontrib><creatorcontrib>Xiao, RenZheng</creatorcontrib><creatorcontrib>Yang, Shiming</creatorcontrib><creatorcontrib>Yokoyama, Hiroki</creatorcontrib><title>A high-granularity digital tracking calorimeter optimized for proton CT</title><description>A typical proton CT (pCT) detector comprises a tracking system, used to measure the proton position before and after the imaged object, and an energy/range detector to measure the residual proton range after crossing the object. The Bergen pCT collaboration was established to design and build a prototype pCT scanner with a high granularity digital tracking calorimeter used as both tracking and energy/range detector. In this work the conceptual design and the layout of the mechanical and electronics implementation, along with Monte Carlo simulations of the new pCT system are reported. The digital tracking calorimeter is a multilayer structure with a lateral aperture of 27 cm × 16.6 cm, made of 41 detector/absorber sandwich layers (calorimeter), with aluminum (3.5 mm) used both as absorber and carrier, and two additional layers used as tracking system (rear trackers) positioned downstream of the imaged object; no tracking upstream the object is included. The rear tracker’s structure only differs from the calorimeter layers for the carrier made of ∼200 μm carbon fleece and carbon paper (carbon-epoxy sandwich), to minimize scattering. Each sensitive layer consists of 108 ALICE pixel detector (ALPIDE) chip sensors (developed for ALICE, CERN) bonded on a polyimide flex and subsequently bonded to a larger flexible printed circuit board. Beam tests tailored to the pCT operation have been performed using high-energetic (50–220 MeV/u) proton and ion beams at the Heidelberg Ion-Beam Therapy Center (HIT) in Germany. These tests proved the ALPIDE response independent of occupancy and proportional to the particle energy deposition, making the distinction of different ion tracks possible. The read-out electronics is able to handle enough data to acquire a single 2D image in few seconds making the system fast enough to be used in a clinical environment. For the reconstructed images in the modeled Monte Carlo simulation, the water equivalent path length error is lower than 2 mm, and the relative stopping power accuracy is better than 0.4%. Thanks to its ability to detect different types of radiation and its specific design, the pCT scanner can be employed for additional online applications during the treatment, such as in-situ proton range verification.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqNyjsOwjAMANAsDAi4gzlAJVIUKkZU8TlA98hK09QijSvXDHB6Fg7A9Ja3NvcLjJTGKgmWV0YhfUNPiRQzqGB4UkkQMLPQFDUK8Kw00Sf2MLDALKxcoO22ZjVgXuLu58bsb9eufVRBaFEqvrCgt7Z2B1837nS27vjP-QJwvDO9</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Alme, Johan</creator><creator>Barnaföldi, Gergely Gábor</creator><creator>Barthel, Rene</creator><creator>Borshchov, Vyacheslav</creator><creator>Bodova, Tea</creator><creator>van den Brink, Anthony</creator><creator>Brons, Stephan</creator><creator>Chaar, Mamdouh</creator><creator>Eikeland, Viljar Nilsen</creator><creator>Feofilov, Grigory</creator><creator>Genov, Georgi</creator><creator>Grimstad, Silje</creator><creator>Grøttvik, Ola Slettevoll</creator><creator>Helstrup, Håvard</creator><creator>Herland, Alf Kristoffer</creator><creator>Hilde, Annar Eivindplass</creator><creator>Igolkin, Sergey</creator><creator>Keidel, Ralf</creator><creator>Kobdaj, Chinorat</creator><creator>van der Kolk, Naomi</creator><creator>Listratenko, Oleksandr</creator><creator>Malik, Qasim Waheed</creator><creator>Mehendale, Shruti Vineet</creator><creator>Meric, Ilker</creator><creator>Nesbø, Simon Voigt</creator><creator>Odland, Odd Harald</creator><creator>Papp, Gábor</creator><creator>Peitzmann, Thomas</creator><creator>Pettersen, Helge Egil Seime</creator><creator>Piersimoni, Pierluigi</creator><creator>Protsenko, Maksym</creator><creator>Rehman, Attiq Ur</creator><creator>Richter, Matthias</creator><creator>Røhrich, Dieter</creator><creator>Samnøy, Andreas Tefre</creator><creator>Seco, Joao</creator><creator>Setterdahl, Lena</creator><creator>Shafiee, Hesam</creator><creator>Skjolddal, Øistein Jelmert</creator><creator>Solheim, Emilie Haugland</creator><creator>Songmoolnak, Arnon</creator><creator>Sudár, Ákos</creator><creator>Sølie, Jarle Rambo</creator><creator>Tambave, Ganesh Jagannath</creator><creator>Tymchuk, Ihor</creator><creator>Ullaland, Kjetil</creator><creator>Underdal, Håkon Andreas</creator><creator>Varga-Kofarago, Monika</creator><creator>Volz, Lennart</creator><creator>Wagner, Boris</creator><creator>Widerøe, Fredrik Mekki</creator><creator>Xiao, RenZheng</creator><creator>Yang, Shiming</creator><creator>Yokoyama, Hiroki</creator><general>Frontiers Media</general><scope>3HK</scope></search><sort><creationdate>2020</creationdate><title>A high-granularity digital tracking calorimeter optimized for proton CT</title><author>Alme, Johan ; Barnaföldi, Gergely Gábor ; Barthel, Rene ; Borshchov, Vyacheslav ; Bodova, Tea ; van den Brink, Anthony ; Brons, Stephan ; Chaar, Mamdouh ; Eikeland, Viljar Nilsen ; Feofilov, Grigory ; Genov, Georgi ; Grimstad, Silje ; Grøttvik, Ola Slettevoll ; Helstrup, Håvard ; Herland, Alf Kristoffer ; Hilde, Annar Eivindplass ; Igolkin, Sergey ; Keidel, Ralf ; Kobdaj, Chinorat ; van der Kolk, Naomi ; Listratenko, Oleksandr ; Malik, Qasim Waheed ; Mehendale, Shruti Vineet ; Meric, Ilker ; Nesbø, Simon Voigt ; Odland, Odd Harald ; Papp, Gábor ; Peitzmann, Thomas ; Pettersen, Helge Egil Seime ; Piersimoni, Pierluigi ; Protsenko, Maksym ; Rehman, Attiq Ur ; Richter, Matthias ; Røhrich, Dieter ; Samnøy, Andreas Tefre ; Seco, Joao ; Setterdahl, Lena ; Shafiee, Hesam ; Skjolddal, Øistein Jelmert ; Solheim, Emilie Haugland ; Songmoolnak, Arnon ; Sudár, Ákos ; Sølie, Jarle Rambo ; Tambave, Ganesh Jagannath ; Tymchuk, Ihor ; Ullaland, Kjetil ; Underdal, Håkon Andreas ; Varga-Kofarago, Monika ; Volz, Lennart ; Wagner, Boris ; Widerøe, Fredrik Mekki ; Xiao, RenZheng ; Yang, Shiming ; Yokoyama, Hiroki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_27569153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Alme, Johan</creatorcontrib><creatorcontrib>Barnaföldi, Gergely Gábor</creatorcontrib><creatorcontrib>Barthel, Rene</creatorcontrib><creatorcontrib>Borshchov, Vyacheslav</creatorcontrib><creatorcontrib>Bodova, Tea</creatorcontrib><creatorcontrib>van den Brink, Anthony</creatorcontrib><creatorcontrib>Brons, Stephan</creatorcontrib><creatorcontrib>Chaar, Mamdouh</creatorcontrib><creatorcontrib>Eikeland, Viljar Nilsen</creatorcontrib><creatorcontrib>Feofilov, Grigory</creatorcontrib><creatorcontrib>Genov, Georgi</creatorcontrib><creatorcontrib>Grimstad, Silje</creatorcontrib><creatorcontrib>Grøttvik, Ola Slettevoll</creatorcontrib><creatorcontrib>Helstrup, Håvard</creatorcontrib><creatorcontrib>Herland, Alf Kristoffer</creatorcontrib><creatorcontrib>Hilde, Annar Eivindplass</creatorcontrib><creatorcontrib>Igolkin, Sergey</creatorcontrib><creatorcontrib>Keidel, Ralf</creatorcontrib><creatorcontrib>Kobdaj, Chinorat</creatorcontrib><creatorcontrib>van der Kolk, Naomi</creatorcontrib><creatorcontrib>Listratenko, Oleksandr</creatorcontrib><creatorcontrib>Malik, Qasim Waheed</creatorcontrib><creatorcontrib>Mehendale, Shruti Vineet</creatorcontrib><creatorcontrib>Meric, Ilker</creatorcontrib><creatorcontrib>Nesbø, Simon Voigt</creatorcontrib><creatorcontrib>Odland, Odd Harald</creatorcontrib><creatorcontrib>Papp, Gábor</creatorcontrib><creatorcontrib>Peitzmann, Thomas</creatorcontrib><creatorcontrib>Pettersen, Helge Egil Seime</creatorcontrib><creatorcontrib>Piersimoni, Pierluigi</creatorcontrib><creatorcontrib>Protsenko, Maksym</creatorcontrib><creatorcontrib>Rehman, Attiq Ur</creatorcontrib><creatorcontrib>Richter, Matthias</creatorcontrib><creatorcontrib>Røhrich, Dieter</creatorcontrib><creatorcontrib>Samnøy, Andreas Tefre</creatorcontrib><creatorcontrib>Seco, Joao</creatorcontrib><creatorcontrib>Setterdahl, Lena</creatorcontrib><creatorcontrib>Shafiee, Hesam</creatorcontrib><creatorcontrib>Skjolddal, Øistein Jelmert</creatorcontrib><creatorcontrib>Solheim, Emilie Haugland</creatorcontrib><creatorcontrib>Songmoolnak, Arnon</creatorcontrib><creatorcontrib>Sudár, Ákos</creatorcontrib><creatorcontrib>Sølie, Jarle Rambo</creatorcontrib><creatorcontrib>Tambave, Ganesh Jagannath</creatorcontrib><creatorcontrib>Tymchuk, Ihor</creatorcontrib><creatorcontrib>Ullaland, Kjetil</creatorcontrib><creatorcontrib>Underdal, Håkon Andreas</creatorcontrib><creatorcontrib>Varga-Kofarago, Monika</creatorcontrib><creatorcontrib>Volz, Lennart</creatorcontrib><creatorcontrib>Wagner, Boris</creatorcontrib><creatorcontrib>Widerøe, Fredrik Mekki</creatorcontrib><creatorcontrib>Xiao, RenZheng</creatorcontrib><creatorcontrib>Yang, Shiming</creatorcontrib><creatorcontrib>Yokoyama, Hiroki</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alme, Johan</au><au>Barnaföldi, Gergely Gábor</au><au>Barthel, Rene</au><au>Borshchov, Vyacheslav</au><au>Bodova, Tea</au><au>van den Brink, Anthony</au><au>Brons, Stephan</au><au>Chaar, Mamdouh</au><au>Eikeland, Viljar Nilsen</au><au>Feofilov, Grigory</au><au>Genov, Georgi</au><au>Grimstad, Silje</au><au>Grøttvik, Ola Slettevoll</au><au>Helstrup, Håvard</au><au>Herland, Alf Kristoffer</au><au>Hilde, Annar Eivindplass</au><au>Igolkin, Sergey</au><au>Keidel, Ralf</au><au>Kobdaj, Chinorat</au><au>van der Kolk, Naomi</au><au>Listratenko, Oleksandr</au><au>Malik, Qasim Waheed</au><au>Mehendale, Shruti Vineet</au><au>Meric, Ilker</au><au>Nesbø, Simon Voigt</au><au>Odland, Odd Harald</au><au>Papp, Gábor</au><au>Peitzmann, Thomas</au><au>Pettersen, Helge Egil Seime</au><au>Piersimoni, Pierluigi</au><au>Protsenko, Maksym</au><au>Rehman, Attiq Ur</au><au>Richter, Matthias</au><au>Røhrich, Dieter</au><au>Samnøy, Andreas Tefre</au><au>Seco, Joao</au><au>Setterdahl, Lena</au><au>Shafiee, Hesam</au><au>Skjolddal, Øistein Jelmert</au><au>Solheim, Emilie Haugland</au><au>Songmoolnak, Arnon</au><au>Sudár, Ákos</au><au>Sølie, Jarle Rambo</au><au>Tambave, Ganesh Jagannath</au><au>Tymchuk, Ihor</au><au>Ullaland, Kjetil</au><au>Underdal, Håkon Andreas</au><au>Varga-Kofarago, Monika</au><au>Volz, Lennart</au><au>Wagner, Boris</au><au>Widerøe, Fredrik Mekki</au><au>Xiao, RenZheng</au><au>Yang, Shiming</au><au>Yokoyama, Hiroki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high-granularity digital tracking calorimeter optimized for proton CT</atitle><date>2020</date><risdate>2020</risdate><abstract>A typical proton CT (pCT) detector comprises a tracking system, used to measure the proton position before and after the imaged object, and an energy/range detector to measure the residual proton range after crossing the object. The Bergen pCT collaboration was established to design and build a prototype pCT scanner with a high granularity digital tracking calorimeter used as both tracking and energy/range detector. In this work the conceptual design and the layout of the mechanical and electronics implementation, along with Monte Carlo simulations of the new pCT system are reported. The digital tracking calorimeter is a multilayer structure with a lateral aperture of 27 cm × 16.6 cm, made of 41 detector/absorber sandwich layers (calorimeter), with aluminum (3.5 mm) used both as absorber and carrier, and two additional layers used as tracking system (rear trackers) positioned downstream of the imaged object; no tracking upstream the object is included. The rear tracker’s structure only differs from the calorimeter layers for the carrier made of ∼200 μm carbon fleece and carbon paper (carbon-epoxy sandwich), to minimize scattering. Each sensitive layer consists of 108 ALICE pixel detector (ALPIDE) chip sensors (developed for ALICE, CERN) bonded on a polyimide flex and subsequently bonded to a larger flexible printed circuit board. Beam tests tailored to the pCT operation have been performed using high-energetic (50–220 MeV/u) proton and ion beams at the Heidelberg Ion-Beam Therapy Center (HIT) in Germany. These tests proved the ALPIDE response independent of occupancy and proportional to the particle energy deposition, making the distinction of different ion tracks possible. The read-out electronics is able to handle enough data to acquire a single 2D image in few seconds making the system fast enough to be used in a clinical environment. For the reconstructed images in the modeled Monte Carlo simulation, the water equivalent path length error is lower than 2 mm, and the relative stopping power accuracy is better than 0.4%. Thanks to its ability to detect different types of radiation and its specific design, the pCT scanner can be employed for additional online applications during the treatment, such as in-situ proton range verification.</abstract><pub>Frontiers Media</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_cristin_nora_11250_2756915
source NORA - Norwegian Open Research Archives
title A high-granularity digital tracking calorimeter optimized for proton CT
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high-granularity%20digital%20tracking%20calorimeter%20optimized%20for%20proton%20CT&rft.au=Alme,%20Johan&rft.date=2020&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_2756915%3C/cristin_3HK%3E%3Cgrp_id%3Ecdi_FETCH-cristin_nora_11250_27569153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true