Loading…

Insights into the quantification and reporting of model-related uncertainty across different disciplines

Quantifying uncertainty associated with our models is the only way we can ex- press how much we know about any phenomenon. Incomplete consideration of model-based uncertainties can lead to overstated conclusions with real-world im- pacts in diverse spheres, including conservation, epidemiology, clim...

Full description

Saved in:
Bibliographic Details
Main Authors: Simmonds, Emily Grace, Dunn-Sigouin, Etienne, Adjei, Kwaku Peprah, Andersen, Christoffer Wold, Aspheim, Janne Cathrin Hetle, Battistin, Claudia, Bulso, Nicola, Christensen, Hannah M, Cretois, Benjamin, Cubero, Ryan John Abat, Davidovich, Ivan Andres, Dickel, Lisa, Dunn, Benjamin Adric, Dyrstad, Karin, Einum, Sigurd, Giglio, Donata, Gjerløw, Haakon, Godefroidt, Amélie, González-Gil, Ricardo, Gonzalo Cogno, Soledad, Große, Fabian, Halloran, Paul, Jensen, Mari Fjalstad, Kennedy, John James, Langsæther, Peter Egge, Laverick, Jack H, Lederberger, Debora, Li, Camille, Mandeville, Elizabeth G, Mandeville, Caitlin, Moe, Espen, Schröder, Tobias Navarro, Nunan, David, Sicacha-Parada, Jorge, Simpson, Melanie Rae, Skarstein, Emma Sofie, Spensberger, Clemens, Stevens, Richard, Subramanian, Aneesh C, Svendsen, Lea, Theisen, Ole Magnus, Watret, Connor, O'Hara, Robert B
Format: Article
Language:English
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quantifying uncertainty associated with our models is the only way we can ex- press how much we know about any phenomenon. Incomplete consideration of model-based uncertainties can lead to overstated conclusions with real-world im- pacts in diverse spheres, including conservation, epidemiology, climate science, and policy. Despite these potentially damaging consequences, we still know little about how different fields quantify and report uncertainty. We introduce the ‘‘sources of uncertainty’’ framework, using it to conduct a systematic audit of model-related uncertainty quantification from seven scientific fields, spanning the biological, physical, and political sciences. Our interdisciplinary audit shows no field fully considers all possible sources of uncertainty, but each has its own best practices alongside shared outstanding challenges. We make ten easy-to- implement recommendations to improve the consistency, completeness, and clarity of reporting on model-related uncertainty. These recommendations serve as a guide to best practices across scientific fields and expand our toolbox for high-quality research.