Loading…
Genus two curves on abelian surfaces
This paper deals with singularities of genus 2 curves on a general (d1, d2)- polarized abelian surface (S, L). In analogy with Chen’s results concerning rational curves on K3 surfaces [Ch1, Ch2], it is natural to ask whether all such curves are nodal. We prove that this holds true if and only if d2...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Knutsen, Andreas Leopold Lelli-Chiesa, Margherita |
description | This paper deals with singularities of genus 2 curves on a general (d1, d2)- polarized abelian surface (S, L). In analogy with Chen’s results concerning rational curves on K3 surfaces [Ch1, Ch2], it is natural to ask whether all such curves are nodal. We prove that this holds true if and only if d2 is not divisible by 4. In the cases where d2 is a multiple of 4, we exhibit genus 2 curves in |L| that have a triple, 4-tuple or 6-tuple point. We show that these are the only possible types of unnodal singularities of a genus 2 curve in |L|. Furthermore, with no assumption on d1 and d2, we prove the existence of at least one nodal genus 2 curve in |L|. As a corollary, we obtain nonemptiness of all Severi varieties on general abelian surfaces and hence generalize [KLM, Thm. 1.1] to nonprimitive polarizations. |
format | article |
fullrecord | <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_3065359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_3065359</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_30653593</originalsourceid><addsrcrecordid>eNrjZFBxT80rLVYoKc9XSC4tKkstVsjPU0hMSs3JTMxTKC4tSktMTi3mYWBNS8wpTuWF0twMim6uIc4euslFmcUlmXnxeflFifGGhkamBvHGBmamxqaWxsSoAQD11SZO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Genus two curves on abelian surfaces</title><source>NORA - Norwegian Open Research Archives</source><creator>Knutsen, Andreas Leopold ; Lelli-Chiesa, Margherita</creator><creatorcontrib>Knutsen, Andreas Leopold ; Lelli-Chiesa, Margherita</creatorcontrib><description>This paper deals with singularities of genus 2 curves on a general (d1, d2)- polarized abelian surface (S, L). In analogy with Chen’s results concerning rational curves on K3 surfaces [Ch1, Ch2], it is natural to ask whether all such curves are nodal. We prove that this holds true if and only if d2 is not divisible by 4. In the cases where d2 is a multiple of 4, we exhibit genus 2 curves in |L| that have a triple, 4-tuple or 6-tuple point. We show that these are the only possible types of unnodal singularities of a genus 2 curve in |L|. Furthermore, with no assumption on d1 and d2, we prove the existence of at least one nodal genus 2 curve in |L|. As a corollary, we obtain nonemptiness of all Severi varieties on general abelian surfaces and hence generalize [KLM, Thm. 1.1] to nonprimitive polarizations.</description><language>eng</language><publisher>Société mathématique de France</publisher><creationdate>2022</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26567</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/3065359$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Knutsen, Andreas Leopold</creatorcontrib><creatorcontrib>Lelli-Chiesa, Margherita</creatorcontrib><title>Genus two curves on abelian surfaces</title><description>This paper deals with singularities of genus 2 curves on a general (d1, d2)- polarized abelian surface (S, L). In analogy with Chen’s results concerning rational curves on K3 surfaces [Ch1, Ch2], it is natural to ask whether all such curves are nodal. We prove that this holds true if and only if d2 is not divisible by 4. In the cases where d2 is a multiple of 4, we exhibit genus 2 curves in |L| that have a triple, 4-tuple or 6-tuple point. We show that these are the only possible types of unnodal singularities of a genus 2 curve in |L|. Furthermore, with no assumption on d1 and d2, we prove the existence of at least one nodal genus 2 curve in |L|. As a corollary, we obtain nonemptiness of all Severi varieties on general abelian surfaces and hence generalize [KLM, Thm. 1.1] to nonprimitive polarizations.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNrjZFBxT80rLVYoKc9XSC4tKkstVsjPU0hMSs3JTMxTKC4tSktMTi3mYWBNS8wpTuWF0twMim6uIc4euslFmcUlmXnxeflFifGGhkamBvHGBmamxqaWxsSoAQD11SZO</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Knutsen, Andreas Leopold</creator><creator>Lelli-Chiesa, Margherita</creator><general>Société mathématique de France</general><scope>3HK</scope></search><sort><creationdate>2022</creationdate><title>Genus two curves on abelian surfaces</title><author>Knutsen, Andreas Leopold ; Lelli-Chiesa, Margherita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_30653593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Knutsen, Andreas Leopold</creatorcontrib><creatorcontrib>Lelli-Chiesa, Margherita</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Knutsen, Andreas Leopold</au><au>Lelli-Chiesa, Margherita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genus two curves on abelian surfaces</atitle><date>2022</date><risdate>2022</risdate><abstract>This paper deals with singularities of genus 2 curves on a general (d1, d2)- polarized abelian surface (S, L). In analogy with Chen’s results concerning rational curves on K3 surfaces [Ch1, Ch2], it is natural to ask whether all such curves are nodal. We prove that this holds true if and only if d2 is not divisible by 4. In the cases where d2 is a multiple of 4, we exhibit genus 2 curves in |L| that have a triple, 4-tuple or 6-tuple point. We show that these are the only possible types of unnodal singularities of a genus 2 curve in |L|. Furthermore, with no assumption on d1 and d2, we prove the existence of at least one nodal genus 2 curve in |L|. As a corollary, we obtain nonemptiness of all Severi varieties on general abelian surfaces and hence generalize [KLM, Thm. 1.1] to nonprimitive polarizations.</abstract><pub>Société mathématique de France</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_cristin_nora_11250_3065359 |
source | NORA - Norwegian Open Research Archives |
title | Genus two curves on abelian surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genus%20two%20curves%20on%20abelian%20surfaces&rft.au=Knutsen,%20Andreas%20Leopold&rft.date=2022&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_3065359%3C/cristin_3HK%3E%3Cgrp_id%3Ecdi_FETCH-cristin_nora_11250_30653593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |