Loading…

Machine learning in marine ecology: an overview of techniques and applications

Machine learning covers a large set of algorithms that can be trained to identify patterns in data. Thanks to the increase in the amount of data and computing power available, it has become pervasive across scientific disciplines. We first highlight why machine learning is needed in marine ecology....

Full description

Saved in:
Bibliographic Details
Main Authors: Rubbens, Peter, Brodie, Stephanie, Cordier, Tristan, Desto Barcellos, Diogo, DeVos, Paul, Fernandes-Salvador, Jose A, Fincham, Jennifer, Gomes, Alessandra, Handegard, Nils Olav, Howell, Kerry L, Jamet, Cédric, Kartveit, Kyrre Heldal, Moustahfid, Hassan, Parcerisas, Clea, Politikos, Dimitris V, Sauzède, Raphaëlle, Sokolova, Maria, Uusitalo, Laura, Van den Bulcke, Laure, van Helmond, Aloysius, Watson, Jordan T, Welch, Heather, Beltran-Perez, Oscar, Chaffron, Samuel, Greenberg, David S, Kühn, Bernhard, Kiko, Rainer, Lo, Madiop, Lopes, Rubens M, Möller, Klas Ove, Michaels, William, Pala, Ahmet, Romagnan, Jean-Baptiste, Schuchert, Pia, Seydi, Vahid, Villasante, Sebastian, Malde, Ketil, Irisson, Jean-Olivier
Format: Article
Language:English
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Rubbens, Peter
Brodie, Stephanie
Cordier, Tristan
Desto Barcellos, Diogo
DeVos, Paul
Fernandes-Salvador, Jose A
Fincham, Jennifer
Gomes, Alessandra
Handegard, Nils Olav
Howell, Kerry L
Jamet, Cédric
Kartveit, Kyrre Heldal
Moustahfid, Hassan
Parcerisas, Clea
Politikos, Dimitris V
Sauzède, Raphaëlle
Sokolova, Maria
Uusitalo, Laura
Van den Bulcke, Laure
van Helmond, Aloysius
Watson, Jordan T
Welch, Heather
Beltran-Perez, Oscar
Chaffron, Samuel
Greenberg, David S
Kühn, Bernhard
Kiko, Rainer
Lo, Madiop
Lopes, Rubens M
Möller, Klas Ove
Michaels, William
Pala, Ahmet
Romagnan, Jean-Baptiste
Schuchert, Pia
Seydi, Vahid
Villasante, Sebastian
Malde, Ketil
Irisson, Jean-Olivier
description Machine learning covers a large set of algorithms that can be trained to identify patterns in data. Thanks to the increase in the amount of data and computing power available, it has become pervasive across scientific disciplines. We first highlight why machine learning is needed in marine ecology. Then we provide a quick primer on machine learning techniques and vocabulary. We built a database of ∼1000 publications that implement such techniques to analyse marine ecology data. For various data types (images, optical spectra, acoustics, omics, geolocations, biogeochemical profiles, and satellite imagery), we present a historical perspective on applications that proved influential, can serve as templates for new work, or represent the diversity of approaches. Then, we illustrate how machine learning can be used to better understand ecological systems, by combining various sources of marine data. Through this coverage of the literature, we demonstrate an increase in the proportion of marine ecology studies that use machine learning, the pervasiveness of images as a data source, the dominance of machine learning for classification-type problems, and a shift towards deep learning for all data types. This overview is meant to guide researchers who wish to apply machine learning methods to their marine datasets.
format article
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_3096842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_3096842</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_30968423</originalsourceid><addsrcrecordid>eNqNikEKwjAQAHPQQ1H_sD6g0LS2pF5F8aIn72WJ23YhbmpSK_5eBR_gaWBmZirRJq9TbcoiUecT2p6FwBEGYemABW4Yvoqsd757bQEF_ERhYnqCb2Ek2wvfHxQ_5Qo4DI4tjuwlLtW8RRdp9eNCrQ_7y-6Y2sBxZGnEB2y0zsusKbK6Mpu8-Od5A0OXOBI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning in marine ecology: an overview of techniques and applications</title><source>NORA - Norwegian Open Research Archives</source><creator>Rubbens, Peter ; Brodie, Stephanie ; Cordier, Tristan ; Desto Barcellos, Diogo ; DeVos, Paul ; Fernandes-Salvador, Jose A ; Fincham, Jennifer ; Gomes, Alessandra ; Handegard, Nils Olav ; Howell, Kerry L ; Jamet, Cédric ; Kartveit, Kyrre Heldal ; Moustahfid, Hassan ; Parcerisas, Clea ; Politikos, Dimitris V ; Sauzède, Raphaëlle ; Sokolova, Maria ; Uusitalo, Laura ; Van den Bulcke, Laure ; van Helmond, Aloysius ; Watson, Jordan T ; Welch, Heather ; Beltran-Perez, Oscar ; Chaffron, Samuel ; Greenberg, David S ; Kühn, Bernhard ; Kiko, Rainer ; Lo, Madiop ; Lopes, Rubens M ; Möller, Klas Ove ; Michaels, William ; Pala, Ahmet ; Romagnan, Jean-Baptiste ; Schuchert, Pia ; Seydi, Vahid ; Villasante, Sebastian ; Malde, Ketil ; Irisson, Jean-Olivier</creator><creatorcontrib>Rubbens, Peter ; Brodie, Stephanie ; Cordier, Tristan ; Desto Barcellos, Diogo ; DeVos, Paul ; Fernandes-Salvador, Jose A ; Fincham, Jennifer ; Gomes, Alessandra ; Handegard, Nils Olav ; Howell, Kerry L ; Jamet, Cédric ; Kartveit, Kyrre Heldal ; Moustahfid, Hassan ; Parcerisas, Clea ; Politikos, Dimitris V ; Sauzède, Raphaëlle ; Sokolova, Maria ; Uusitalo, Laura ; Van den Bulcke, Laure ; van Helmond, Aloysius ; Watson, Jordan T ; Welch, Heather ; Beltran-Perez, Oscar ; Chaffron, Samuel ; Greenberg, David S ; Kühn, Bernhard ; Kiko, Rainer ; Lo, Madiop ; Lopes, Rubens M ; Möller, Klas Ove ; Michaels, William ; Pala, Ahmet ; Romagnan, Jean-Baptiste ; Schuchert, Pia ; Seydi, Vahid ; Villasante, Sebastian ; Malde, Ketil ; Irisson, Jean-Olivier</creatorcontrib><description>Machine learning covers a large set of algorithms that can be trained to identify patterns in data. Thanks to the increase in the amount of data and computing power available, it has become pervasive across scientific disciplines. We first highlight why machine learning is needed in marine ecology. Then we provide a quick primer on machine learning techniques and vocabulary. We built a database of ∼1000 publications that implement such techniques to analyse marine ecology data. For various data types (images, optical spectra, acoustics, omics, geolocations, biogeochemical profiles, and satellite imagery), we present a historical perspective on applications that proved influential, can serve as templates for new work, or represent the diversity of approaches. Then, we illustrate how machine learning can be used to better understand ecological systems, by combining various sources of marine data. Through this coverage of the literature, we demonstrate an increase in the proportion of marine ecology studies that use machine learning, the pervasiveness of images as a data source, the dominance of machine learning for classification-type problems, and a shift towards deep learning for all data types. This overview is meant to guide researchers who wish to apply machine learning methods to their marine datasets.</description><identifier>ISSN: 1829-1853</identifier><language>eng</language><creationdate>2023</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26567</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/3096842$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Rubbens, Peter</creatorcontrib><creatorcontrib>Brodie, Stephanie</creatorcontrib><creatorcontrib>Cordier, Tristan</creatorcontrib><creatorcontrib>Desto Barcellos, Diogo</creatorcontrib><creatorcontrib>DeVos, Paul</creatorcontrib><creatorcontrib>Fernandes-Salvador, Jose A</creatorcontrib><creatorcontrib>Fincham, Jennifer</creatorcontrib><creatorcontrib>Gomes, Alessandra</creatorcontrib><creatorcontrib>Handegard, Nils Olav</creatorcontrib><creatorcontrib>Howell, Kerry L</creatorcontrib><creatorcontrib>Jamet, Cédric</creatorcontrib><creatorcontrib>Kartveit, Kyrre Heldal</creatorcontrib><creatorcontrib>Moustahfid, Hassan</creatorcontrib><creatorcontrib>Parcerisas, Clea</creatorcontrib><creatorcontrib>Politikos, Dimitris V</creatorcontrib><creatorcontrib>Sauzède, Raphaëlle</creatorcontrib><creatorcontrib>Sokolova, Maria</creatorcontrib><creatorcontrib>Uusitalo, Laura</creatorcontrib><creatorcontrib>Van den Bulcke, Laure</creatorcontrib><creatorcontrib>van Helmond, Aloysius</creatorcontrib><creatorcontrib>Watson, Jordan T</creatorcontrib><creatorcontrib>Welch, Heather</creatorcontrib><creatorcontrib>Beltran-Perez, Oscar</creatorcontrib><creatorcontrib>Chaffron, Samuel</creatorcontrib><creatorcontrib>Greenberg, David S</creatorcontrib><creatorcontrib>Kühn, Bernhard</creatorcontrib><creatorcontrib>Kiko, Rainer</creatorcontrib><creatorcontrib>Lo, Madiop</creatorcontrib><creatorcontrib>Lopes, Rubens M</creatorcontrib><creatorcontrib>Möller, Klas Ove</creatorcontrib><creatorcontrib>Michaels, William</creatorcontrib><creatorcontrib>Pala, Ahmet</creatorcontrib><creatorcontrib>Romagnan, Jean-Baptiste</creatorcontrib><creatorcontrib>Schuchert, Pia</creatorcontrib><creatorcontrib>Seydi, Vahid</creatorcontrib><creatorcontrib>Villasante, Sebastian</creatorcontrib><creatorcontrib>Malde, Ketil</creatorcontrib><creatorcontrib>Irisson, Jean-Olivier</creatorcontrib><title>Machine learning in marine ecology: an overview of techniques and applications</title><description>Machine learning covers a large set of algorithms that can be trained to identify patterns in data. Thanks to the increase in the amount of data and computing power available, it has become pervasive across scientific disciplines. We first highlight why machine learning is needed in marine ecology. Then we provide a quick primer on machine learning techniques and vocabulary. We built a database of ∼1000 publications that implement such techniques to analyse marine ecology data. For various data types (images, optical spectra, acoustics, omics, geolocations, biogeochemical profiles, and satellite imagery), we present a historical perspective on applications that proved influential, can serve as templates for new work, or represent the diversity of approaches. Then, we illustrate how machine learning can be used to better understand ecological systems, by combining various sources of marine data. Through this coverage of the literature, we demonstrate an increase in the proportion of marine ecology studies that use machine learning, the pervasiveness of images as a data source, the dominance of machine learning for classification-type problems, and a shift towards deep learning for all data types. This overview is meant to guide researchers who wish to apply machine learning methods to their marine datasets.</description><issn>1829-1853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqNikEKwjAQAHPQQ1H_sD6g0LS2pF5F8aIn72WJ23YhbmpSK_5eBR_gaWBmZirRJq9TbcoiUecT2p6FwBEGYemABW4Yvoqsd757bQEF_ERhYnqCb2Ek2wvfHxQ_5Qo4DI4tjuwlLtW8RRdp9eNCrQ_7y-6Y2sBxZGnEB2y0zsusKbK6Mpu8-Od5A0OXOBI</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Rubbens, Peter</creator><creator>Brodie, Stephanie</creator><creator>Cordier, Tristan</creator><creator>Desto Barcellos, Diogo</creator><creator>DeVos, Paul</creator><creator>Fernandes-Salvador, Jose A</creator><creator>Fincham, Jennifer</creator><creator>Gomes, Alessandra</creator><creator>Handegard, Nils Olav</creator><creator>Howell, Kerry L</creator><creator>Jamet, Cédric</creator><creator>Kartveit, Kyrre Heldal</creator><creator>Moustahfid, Hassan</creator><creator>Parcerisas, Clea</creator><creator>Politikos, Dimitris V</creator><creator>Sauzède, Raphaëlle</creator><creator>Sokolova, Maria</creator><creator>Uusitalo, Laura</creator><creator>Van den Bulcke, Laure</creator><creator>van Helmond, Aloysius</creator><creator>Watson, Jordan T</creator><creator>Welch, Heather</creator><creator>Beltran-Perez, Oscar</creator><creator>Chaffron, Samuel</creator><creator>Greenberg, David S</creator><creator>Kühn, Bernhard</creator><creator>Kiko, Rainer</creator><creator>Lo, Madiop</creator><creator>Lopes, Rubens M</creator><creator>Möller, Klas Ove</creator><creator>Michaels, William</creator><creator>Pala, Ahmet</creator><creator>Romagnan, Jean-Baptiste</creator><creator>Schuchert, Pia</creator><creator>Seydi, Vahid</creator><creator>Villasante, Sebastian</creator><creator>Malde, Ketil</creator><creator>Irisson, Jean-Olivier</creator><scope>3HK</scope></search><sort><creationdate>2023</creationdate><title>Machine learning in marine ecology: an overview of techniques and applications</title><author>Rubbens, Peter ; Brodie, Stephanie ; Cordier, Tristan ; Desto Barcellos, Diogo ; DeVos, Paul ; Fernandes-Salvador, Jose A ; Fincham, Jennifer ; Gomes, Alessandra ; Handegard, Nils Olav ; Howell, Kerry L ; Jamet, Cédric ; Kartveit, Kyrre Heldal ; Moustahfid, Hassan ; Parcerisas, Clea ; Politikos, Dimitris V ; Sauzède, Raphaëlle ; Sokolova, Maria ; Uusitalo, Laura ; Van den Bulcke, Laure ; van Helmond, Aloysius ; Watson, Jordan T ; Welch, Heather ; Beltran-Perez, Oscar ; Chaffron, Samuel ; Greenberg, David S ; Kühn, Bernhard ; Kiko, Rainer ; Lo, Madiop ; Lopes, Rubens M ; Möller, Klas Ove ; Michaels, William ; Pala, Ahmet ; Romagnan, Jean-Baptiste ; Schuchert, Pia ; Seydi, Vahid ; Villasante, Sebastian ; Malde, Ketil ; Irisson, Jean-Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_30968423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Rubbens, Peter</creatorcontrib><creatorcontrib>Brodie, Stephanie</creatorcontrib><creatorcontrib>Cordier, Tristan</creatorcontrib><creatorcontrib>Desto Barcellos, Diogo</creatorcontrib><creatorcontrib>DeVos, Paul</creatorcontrib><creatorcontrib>Fernandes-Salvador, Jose A</creatorcontrib><creatorcontrib>Fincham, Jennifer</creatorcontrib><creatorcontrib>Gomes, Alessandra</creatorcontrib><creatorcontrib>Handegard, Nils Olav</creatorcontrib><creatorcontrib>Howell, Kerry L</creatorcontrib><creatorcontrib>Jamet, Cédric</creatorcontrib><creatorcontrib>Kartveit, Kyrre Heldal</creatorcontrib><creatorcontrib>Moustahfid, Hassan</creatorcontrib><creatorcontrib>Parcerisas, Clea</creatorcontrib><creatorcontrib>Politikos, Dimitris V</creatorcontrib><creatorcontrib>Sauzède, Raphaëlle</creatorcontrib><creatorcontrib>Sokolova, Maria</creatorcontrib><creatorcontrib>Uusitalo, Laura</creatorcontrib><creatorcontrib>Van den Bulcke, Laure</creatorcontrib><creatorcontrib>van Helmond, Aloysius</creatorcontrib><creatorcontrib>Watson, Jordan T</creatorcontrib><creatorcontrib>Welch, Heather</creatorcontrib><creatorcontrib>Beltran-Perez, Oscar</creatorcontrib><creatorcontrib>Chaffron, Samuel</creatorcontrib><creatorcontrib>Greenberg, David S</creatorcontrib><creatorcontrib>Kühn, Bernhard</creatorcontrib><creatorcontrib>Kiko, Rainer</creatorcontrib><creatorcontrib>Lo, Madiop</creatorcontrib><creatorcontrib>Lopes, Rubens M</creatorcontrib><creatorcontrib>Möller, Klas Ove</creatorcontrib><creatorcontrib>Michaels, William</creatorcontrib><creatorcontrib>Pala, Ahmet</creatorcontrib><creatorcontrib>Romagnan, Jean-Baptiste</creatorcontrib><creatorcontrib>Schuchert, Pia</creatorcontrib><creatorcontrib>Seydi, Vahid</creatorcontrib><creatorcontrib>Villasante, Sebastian</creatorcontrib><creatorcontrib>Malde, Ketil</creatorcontrib><creatorcontrib>Irisson, Jean-Olivier</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rubbens, Peter</au><au>Brodie, Stephanie</au><au>Cordier, Tristan</au><au>Desto Barcellos, Diogo</au><au>DeVos, Paul</au><au>Fernandes-Salvador, Jose A</au><au>Fincham, Jennifer</au><au>Gomes, Alessandra</au><au>Handegard, Nils Olav</au><au>Howell, Kerry L</au><au>Jamet, Cédric</au><au>Kartveit, Kyrre Heldal</au><au>Moustahfid, Hassan</au><au>Parcerisas, Clea</au><au>Politikos, Dimitris V</au><au>Sauzède, Raphaëlle</au><au>Sokolova, Maria</au><au>Uusitalo, Laura</au><au>Van den Bulcke, Laure</au><au>van Helmond, Aloysius</au><au>Watson, Jordan T</au><au>Welch, Heather</au><au>Beltran-Perez, Oscar</au><au>Chaffron, Samuel</au><au>Greenberg, David S</au><au>Kühn, Bernhard</au><au>Kiko, Rainer</au><au>Lo, Madiop</au><au>Lopes, Rubens M</au><au>Möller, Klas Ove</au><au>Michaels, William</au><au>Pala, Ahmet</au><au>Romagnan, Jean-Baptiste</au><au>Schuchert, Pia</au><au>Seydi, Vahid</au><au>Villasante, Sebastian</au><au>Malde, Ketil</au><au>Irisson, Jean-Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning in marine ecology: an overview of techniques and applications</atitle><date>2023</date><risdate>2023</risdate><issn>1829-1853</issn><abstract>Machine learning covers a large set of algorithms that can be trained to identify patterns in data. Thanks to the increase in the amount of data and computing power available, it has become pervasive across scientific disciplines. We first highlight why machine learning is needed in marine ecology. Then we provide a quick primer on machine learning techniques and vocabulary. We built a database of ∼1000 publications that implement such techniques to analyse marine ecology data. For various data types (images, optical spectra, acoustics, omics, geolocations, biogeochemical profiles, and satellite imagery), we present a historical perspective on applications that proved influential, can serve as templates for new work, or represent the diversity of approaches. Then, we illustrate how machine learning can be used to better understand ecological systems, by combining various sources of marine data. Through this coverage of the literature, we demonstrate an increase in the proportion of marine ecology studies that use machine learning, the pervasiveness of images as a data source, the dominance of machine learning for classification-type problems, and a shift towards deep learning for all data types. This overview is meant to guide researchers who wish to apply machine learning methods to their marine datasets.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1829-1853
ispartof
issn 1829-1853
language eng
recordid cdi_cristin_nora_11250_3096842
source NORA - Norwegian Open Research Archives
title Machine learning in marine ecology: an overview of techniques and applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20in%20marine%20ecology:%20an%20overview%20of%20techniques%20and%20applications&rft.au=Rubbens,%20Peter&rft.date=2023&rft.issn=1829-1853&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_3096842%3C/cristin_3HK%3E%3Cgrp_id%3Ecdi_FETCH-cristin_nora_11250_30968423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true