Loading…

Engineering a Galinstan-based ferromagnetic fluid for heat management

The development of increasingly smaller electronic devices brings on heat dissipation challenges, which can severely hinder their performance. Consequently, there is a critical need to maintain the working temperature of these devices at optimal values. At room temperature, the versatile design and...

Full description

Saved in:
Bibliographic Details
Main Authors: Maganinho, J.P, Pinto, R.M.C, Andrade, V, Fischer Eggert, Bruno Guilherme, Frommen, Christoph, Araujo, J.P, Ventura, J.O, Oliveira, J, Pires, A.L, Belo, J.H
Format: Article
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Maganinho, J.P
Pinto, R.M.C
Andrade, V
Fischer Eggert, Bruno Guilherme
Frommen, Christoph
Araujo, J.P
Ventura, J.O
Oliveira, J
Pires, A.L
Belo, J.H
description The development of increasingly smaller electronic devices brings on heat dissipation challenges, which can severely hinder their performance. Consequently, there is a critical need to maintain the working temperature of these devices at optimal values. At room temperature, the versatile design and adaptability of fluidic thermal switches makes them an auspicious solution. In this work, the large heat conductivity and magnetic material compatibility of Galinstan motivated the production of a novel ferromagnetic fluid. Through mechanical alloying within an inert atmosphere, we embedded Ni microparticles in a Galinstan matrix, which provided a liquid metal with a ferromagnetic behavior. This fluid is suitable for a wide range of applications in thermal management. Here, we experimentally demonstrate that a Galinstan-based mixture containing 2.6 wt% of Ni can serve as heat exchange medium in a magnetically activated fluidic thermal switch device. This mixture establishes an optimal thermal bridge between heat source and sink, enabling heat dissipation from the source. This effect intensifies with the device operating frequency, reaching a maximum temperature span of 19.8 % and a maximum switching ratio of 1.26. These results demonstrate the potential of the developed fluid to be integrated into fluidic technologies for temperature control of electronic components.
format article
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_3161586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_3161586</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_31615863</originalsourceid><addsrcrecordid>eNqNykEKAjEMQNFuXIh6h3iAAeswg3upegD3JY5pDbQppPH-uvAArj48_tqFIJmFSFkyIFyxsHRDGR7Y6QmJVFvFLGS8QCpv_lpTeBEaVBTMVEls61YJS6fdrxu3v4T7-TYsyt1YojTF6P1xOsTRz346zeM_zwfghTLN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Engineering a Galinstan-based ferromagnetic fluid for heat management</title><source>NORA - Norwegian Open Research Archives</source><creator>Maganinho, J.P ; Pinto, R.M.C ; Andrade, V ; Fischer Eggert, Bruno Guilherme ; Frommen, Christoph ; Araujo, J.P ; Ventura, J.O ; Oliveira, J ; Pires, A.L ; Belo, J.H</creator><creatorcontrib>Maganinho, J.P ; Pinto, R.M.C ; Andrade, V ; Fischer Eggert, Bruno Guilherme ; Frommen, Christoph ; Araujo, J.P ; Ventura, J.O ; Oliveira, J ; Pires, A.L ; Belo, J.H</creatorcontrib><description>The development of increasingly smaller electronic devices brings on heat dissipation challenges, which can severely hinder their performance. Consequently, there is a critical need to maintain the working temperature of these devices at optimal values. At room temperature, the versatile design and adaptability of fluidic thermal switches makes them an auspicious solution. In this work, the large heat conductivity and magnetic material compatibility of Galinstan motivated the production of a novel ferromagnetic fluid. Through mechanical alloying within an inert atmosphere, we embedded Ni microparticles in a Galinstan matrix, which provided a liquid metal with a ferromagnetic behavior. This fluid is suitable for a wide range of applications in thermal management. Here, we experimentally demonstrate that a Galinstan-based mixture containing 2.6 wt% of Ni can serve as heat exchange medium in a magnetically activated fluidic thermal switch device. This mixture establishes an optimal thermal bridge between heat source and sink, enabling heat dissipation from the source. This effect intensifies with the device operating frequency, reaching a maximum temperature span of 19.8 % and a maximum switching ratio of 1.26. These results demonstrate the potential of the developed fluid to be integrated into fluidic technologies for temperature control of electronic components.</description><language>eng</language><subject>Magnetism ; Magnetisme</subject><creationdate>2024</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26565</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/3161586$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Maganinho, J.P</creatorcontrib><creatorcontrib>Pinto, R.M.C</creatorcontrib><creatorcontrib>Andrade, V</creatorcontrib><creatorcontrib>Fischer Eggert, Bruno Guilherme</creatorcontrib><creatorcontrib>Frommen, Christoph</creatorcontrib><creatorcontrib>Araujo, J.P</creatorcontrib><creatorcontrib>Ventura, J.O</creatorcontrib><creatorcontrib>Oliveira, J</creatorcontrib><creatorcontrib>Pires, A.L</creatorcontrib><creatorcontrib>Belo, J.H</creatorcontrib><title>Engineering a Galinstan-based ferromagnetic fluid for heat management</title><description>The development of increasingly smaller electronic devices brings on heat dissipation challenges, which can severely hinder their performance. Consequently, there is a critical need to maintain the working temperature of these devices at optimal values. At room temperature, the versatile design and adaptability of fluidic thermal switches makes them an auspicious solution. In this work, the large heat conductivity and magnetic material compatibility of Galinstan motivated the production of a novel ferromagnetic fluid. Through mechanical alloying within an inert atmosphere, we embedded Ni microparticles in a Galinstan matrix, which provided a liquid metal with a ferromagnetic behavior. This fluid is suitable for a wide range of applications in thermal management. Here, we experimentally demonstrate that a Galinstan-based mixture containing 2.6 wt% of Ni can serve as heat exchange medium in a magnetically activated fluidic thermal switch device. This mixture establishes an optimal thermal bridge between heat source and sink, enabling heat dissipation from the source. This effect intensifies with the device operating frequency, reaching a maximum temperature span of 19.8 % and a maximum switching ratio of 1.26. These results demonstrate the potential of the developed fluid to be integrated into fluidic technologies for temperature control of electronic components.</description><subject>Magnetism</subject><subject>Magnetisme</subject><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqNykEKAjEMQNFuXIh6h3iAAeswg3upegD3JY5pDbQppPH-uvAArj48_tqFIJmFSFkyIFyxsHRDGR7Y6QmJVFvFLGS8QCpv_lpTeBEaVBTMVEls61YJS6fdrxu3v4T7-TYsyt1YojTF6P1xOsTRz346zeM_zwfghTLN</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Maganinho, J.P</creator><creator>Pinto, R.M.C</creator><creator>Andrade, V</creator><creator>Fischer Eggert, Bruno Guilherme</creator><creator>Frommen, Christoph</creator><creator>Araujo, J.P</creator><creator>Ventura, J.O</creator><creator>Oliveira, J</creator><creator>Pires, A.L</creator><creator>Belo, J.H</creator><scope>3HK</scope></search><sort><creationdate>2024</creationdate><title>Engineering a Galinstan-based ferromagnetic fluid for heat management</title><author>Maganinho, J.P ; Pinto, R.M.C ; Andrade, V ; Fischer Eggert, Bruno Guilherme ; Frommen, Christoph ; Araujo, J.P ; Ventura, J.O ; Oliveira, J ; Pires, A.L ; Belo, J.H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_31615863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Magnetism</topic><topic>Magnetisme</topic><toplevel>online_resources</toplevel><creatorcontrib>Maganinho, J.P</creatorcontrib><creatorcontrib>Pinto, R.M.C</creatorcontrib><creatorcontrib>Andrade, V</creatorcontrib><creatorcontrib>Fischer Eggert, Bruno Guilherme</creatorcontrib><creatorcontrib>Frommen, Christoph</creatorcontrib><creatorcontrib>Araujo, J.P</creatorcontrib><creatorcontrib>Ventura, J.O</creatorcontrib><creatorcontrib>Oliveira, J</creatorcontrib><creatorcontrib>Pires, A.L</creatorcontrib><creatorcontrib>Belo, J.H</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maganinho, J.P</au><au>Pinto, R.M.C</au><au>Andrade, V</au><au>Fischer Eggert, Bruno Guilherme</au><au>Frommen, Christoph</au><au>Araujo, J.P</au><au>Ventura, J.O</au><au>Oliveira, J</au><au>Pires, A.L</au><au>Belo, J.H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering a Galinstan-based ferromagnetic fluid for heat management</atitle><date>2024</date><risdate>2024</risdate><abstract>The development of increasingly smaller electronic devices brings on heat dissipation challenges, which can severely hinder their performance. Consequently, there is a critical need to maintain the working temperature of these devices at optimal values. At room temperature, the versatile design and adaptability of fluidic thermal switches makes them an auspicious solution. In this work, the large heat conductivity and magnetic material compatibility of Galinstan motivated the production of a novel ferromagnetic fluid. Through mechanical alloying within an inert atmosphere, we embedded Ni microparticles in a Galinstan matrix, which provided a liquid metal with a ferromagnetic behavior. This fluid is suitable for a wide range of applications in thermal management. Here, we experimentally demonstrate that a Galinstan-based mixture containing 2.6 wt% of Ni can serve as heat exchange medium in a magnetically activated fluidic thermal switch device. This mixture establishes an optimal thermal bridge between heat source and sink, enabling heat dissipation from the source. This effect intensifies with the device operating frequency, reaching a maximum temperature span of 19.8 % and a maximum switching ratio of 1.26. These results demonstrate the potential of the developed fluid to be integrated into fluidic technologies for temperature control of electronic components.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_cristin_nora_11250_3161586
source NORA - Norwegian Open Research Archives
subjects Magnetism
Magnetisme
title Engineering a Galinstan-based ferromagnetic fluid for heat management
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20a%20Galinstan-based%20ferromagnetic%20fluid%20for%20heat%20management&rft.au=Maganinho,%20J.P&rft.date=2024&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_3161586%3C/cristin_3HK%3E%3Cgrp_id%3Ecdi_FETCH-cristin_nora_11250_31615863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true