Loading…
Microwave-Controlled Light-Pulse Propagation in a Driven A-Type Atomic System with Two-Folded Levels
The temporal and spatial dynamics of one weak probe laser pulse, propagating through a A-type atomic medium with two-folded levels under the resonant excitation of one microwave driving field and one strong control field, is investigated in this paper. By numerically solving coupled Bloch-Maxwell eq...
Saved in:
Published in: | Communications in theoretical physics 2009-07, Vol.52 (7), p.137-142, Article 137 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The temporal and spatial dynamics of one weak probe laser pulse, propagating through a A-type atomic medium with two-folded levels under the resonant excitation of one microwave driving field and one strong control field, is investigated in this paper. By numerically solving coupled Bloch-Maxwell equations, it is found that, in the absence of the microwave driving field, the atomic medium is transparent to the probe pulse at line center, which propagates over sufficiently long distances. By contrast, when the microwave driving field is applied, the probe pulse at line center can be rapidly absorbed on propagation. This substantial reduction of probe transmittance caused by the microwave driving field may lead to potential applications in designing a new kind of optical switching. |
---|---|
ISSN: | 0253-6102 |
DOI: | 10.1088/0253-6102/52/1/30 |