Loading…
Robustness of Diversity Induced Synchronization Transition in a Delayed Small-World Neuronal Network
In a diverse and delayed small-world neuronal network, we have identified the oscillatory-like synchronization transition between anti-phase and complete synchronization [Phys. Rev. E 83 (2011) 046207]. Here we study the influence of the network topology and noise on the synchronization transition....
Saved in:
Published in: | Chinese physics letters 2011-10, Vol.28 (10), p.100501-1-100501-4, Article 100501 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In a diverse and delayed small-world neuronal network, we have identified the oscillatory-like synchronization transition between anti-phase and complete synchronization [Phys. Rev. E 83 (2011) 046207]. Here we study the influence of the network topology and noise on the synchronization transition. The robustness of this transition is investigated. The results show that: (i) the synchronization transition is robust to the neuron number N in the network; (ii) only when the coupled neighbor number k is in the region [4,10], does the synchronization transition exist; (iii) to some extent, the synchronization is destroyed by noise and the oscillatory-like synchronization transition exists for relatively weak noise (D |
---|---|
ISSN: | 0256-307X 1741-3540 |
DOI: | 10.1088/0256-307X/28/10/100501 |