Loading…

Fusing remote and social sensing data for flood impact mapping

The absence of comprehensive situational awareness information poses a significant challenge for humanitarian organizations during their response efforts. We present Flood Insights, an end‐to‐end system, that ingests data from multiple nontraditional data sources such as remote sensing, social sensi...

Full description

Saved in:
Bibliographic Details
Published in:The AI magazine 2024-12, Vol.45 (4), p.486-501
Main Authors: Akhtar, Zainab, Qazi, Umair, El‐Sakka, Aya, Sadiq, Rizwan, Ofli, Ferda, Imran, Muhammad
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1986-563bd1fa74c187a2448ec4e137d8bad3f9cb876d142c82f2e37cc6f682528d063
container_end_page 501
container_issue 4
container_start_page 486
container_title The AI magazine
container_volume 45
creator Akhtar, Zainab
Qazi, Umair
El‐Sakka, Aya
Sadiq, Rizwan
Ofli, Ferda
Imran, Muhammad
description The absence of comprehensive situational awareness information poses a significant challenge for humanitarian organizations during their response efforts. We present Flood Insights, an end‐to‐end system, that ingests data from multiple nontraditional data sources such as remote sensing, social sensing, and geospatial data. We employ state‐of‐the‐art natural language processing and computer vision models to identify flood exposure, ground‐level damage and flood reports, and most importantly, urgent needs of affected people. We deploy and test the system during a recent real‐world catastrophe, the 2022 Pakistan floods, to surface critical situational and damage information at the district level. We validated the system's effectiveness through various statistical analyses using official ground‐truth data, showcasing its strong performance and explanatory power of integrating multiple data sources. Moreover, the system was commended by the United Nations Development Programme stationed in Pakistan, as well as local authorities, for pinpointing hard‐hit districts and enhancing disaster response.
doi_str_mv 10.1002/aaai.12196
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_aaai_12196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AAAI12196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1986-563bd1fa74c187a2448ec4e137d8bad3f9cb876d142c82f2e37cc6f682528d063</originalsourceid><addsrcrecordid>eNp9j81KAzEYRYMoWKsbnyBrYWq-JE0yG2EoVgsFN7oO3-RHIvPHZET69rYd167u4p574RByD2wFjPFHREwr4FCqC7LgQkNRKg6XZMG0MIVUjF-Tm5y_GGPKCLUgT9vvnLpPOoa2nwLFztPcu4QNzaE7Nx4npLEfaWz63tPUDugm2uIwHNtbchWxyeHuL5fkY_v8vnkt9m8vu021LxyURhVrJWoPEbV0YDRyKU1wMoDQ3tToRSxdbbTyILkzPPIgtHMqKsPX3HimxJI8zL9u7HMeQ7TDmFocDxaYPZnbk7k9mx9hmOGf1ITDP6Stqmo3b34BZFla2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fusing remote and social sensing data for flood impact mapping</title><source>ABI/INFORM Global</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><source>Library &amp; Information Science Collection</source><source>Wiley Open Access</source><creator>Akhtar, Zainab ; Qazi, Umair ; El‐Sakka, Aya ; Sadiq, Rizwan ; Ofli, Ferda ; Imran, Muhammad</creator><creatorcontrib>Akhtar, Zainab ; Qazi, Umair ; El‐Sakka, Aya ; Sadiq, Rizwan ; Ofli, Ferda ; Imran, Muhammad</creatorcontrib><description>The absence of comprehensive situational awareness information poses a significant challenge for humanitarian organizations during their response efforts. We present Flood Insights, an end‐to‐end system, that ingests data from multiple nontraditional data sources such as remote sensing, social sensing, and geospatial data. We employ state‐of‐the‐art natural language processing and computer vision models to identify flood exposure, ground‐level damage and flood reports, and most importantly, urgent needs of affected people. We deploy and test the system during a recent real‐world catastrophe, the 2022 Pakistan floods, to surface critical situational and damage information at the district level. We validated the system's effectiveness through various statistical analyses using official ground‐truth data, showcasing its strong performance and explanatory power of integrating multiple data sources. Moreover, the system was commended by the United Nations Development Programme stationed in Pakistan, as well as local authorities, for pinpointing hard‐hit districts and enhancing disaster response.</description><identifier>ISSN: 0738-4602</identifier><identifier>EISSN: 2371-9621</identifier><identifier>DOI: 10.1002/aaai.12196</identifier><language>eng</language><ispartof>The AI magazine, 2024-12, Vol.45 (4), p.486-501</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Ltd on behalf of Association for the Advancement of Artificial Intelligence.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1986-563bd1fa74c187a2448ec4e137d8bad3f9cb876d142c82f2e37cc6f682528d063</cites><orcidid>0000-0003-3918-3230 ; 0000-0003-1395-6290 ; 0000-0002-2448-9694 ; 0000-0003-1850-3688 ; 0000-0001-7882-5502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faaai.12196$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faaai.12196$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids></links><search><creatorcontrib>Akhtar, Zainab</creatorcontrib><creatorcontrib>Qazi, Umair</creatorcontrib><creatorcontrib>El‐Sakka, Aya</creatorcontrib><creatorcontrib>Sadiq, Rizwan</creatorcontrib><creatorcontrib>Ofli, Ferda</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><title>Fusing remote and social sensing data for flood impact mapping</title><title>The AI magazine</title><description>The absence of comprehensive situational awareness information poses a significant challenge for humanitarian organizations during their response efforts. We present Flood Insights, an end‐to‐end system, that ingests data from multiple nontraditional data sources such as remote sensing, social sensing, and geospatial data. We employ state‐of‐the‐art natural language processing and computer vision models to identify flood exposure, ground‐level damage and flood reports, and most importantly, urgent needs of affected people. We deploy and test the system during a recent real‐world catastrophe, the 2022 Pakistan floods, to surface critical situational and damage information at the district level. We validated the system's effectiveness through various statistical analyses using official ground‐truth data, showcasing its strong performance and explanatory power of integrating multiple data sources. Moreover, the system was commended by the United Nations Development Programme stationed in Pakistan, as well as local authorities, for pinpointing hard‐hit districts and enhancing disaster response.</description><issn>0738-4602</issn><issn>2371-9621</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9j81KAzEYRYMoWKsbnyBrYWq-JE0yG2EoVgsFN7oO3-RHIvPHZET69rYd167u4p574RByD2wFjPFHREwr4FCqC7LgQkNRKg6XZMG0MIVUjF-Tm5y_GGPKCLUgT9vvnLpPOoa2nwLFztPcu4QNzaE7Nx4npLEfaWz63tPUDugm2uIwHNtbchWxyeHuL5fkY_v8vnkt9m8vu021LxyURhVrJWoPEbV0YDRyKU1wMoDQ3tToRSxdbbTyILkzPPIgtHMqKsPX3HimxJI8zL9u7HMeQ7TDmFocDxaYPZnbk7k9mx9hmOGf1ITDP6Stqmo3b34BZFla2Q</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Akhtar, Zainab</creator><creator>Qazi, Umair</creator><creator>El‐Sakka, Aya</creator><creator>Sadiq, Rizwan</creator><creator>Ofli, Ferda</creator><creator>Imran, Muhammad</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3918-3230</orcidid><orcidid>https://orcid.org/0000-0003-1395-6290</orcidid><orcidid>https://orcid.org/0000-0002-2448-9694</orcidid><orcidid>https://orcid.org/0000-0003-1850-3688</orcidid><orcidid>https://orcid.org/0000-0001-7882-5502</orcidid></search><sort><creationdate>20241201</creationdate><title>Fusing remote and social sensing data for flood impact mapping</title><author>Akhtar, Zainab ; Qazi, Umair ; El‐Sakka, Aya ; Sadiq, Rizwan ; Ofli, Ferda ; Imran, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1986-563bd1fa74c187a2448ec4e137d8bad3f9cb876d142c82f2e37cc6f682528d063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akhtar, Zainab</creatorcontrib><creatorcontrib>Qazi, Umair</creatorcontrib><creatorcontrib>El‐Sakka, Aya</creatorcontrib><creatorcontrib>Sadiq, Rizwan</creatorcontrib><creatorcontrib>Ofli, Ferda</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Free Archive</collection><collection>CrossRef</collection><jtitle>The AI magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akhtar, Zainab</au><au>Qazi, Umair</au><au>El‐Sakka, Aya</au><au>Sadiq, Rizwan</au><au>Ofli, Ferda</au><au>Imran, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusing remote and social sensing data for flood impact mapping</atitle><jtitle>The AI magazine</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>45</volume><issue>4</issue><spage>486</spage><epage>501</epage><pages>486-501</pages><issn>0738-4602</issn><eissn>2371-9621</eissn><abstract>The absence of comprehensive situational awareness information poses a significant challenge for humanitarian organizations during their response efforts. We present Flood Insights, an end‐to‐end system, that ingests data from multiple nontraditional data sources such as remote sensing, social sensing, and geospatial data. We employ state‐of‐the‐art natural language processing and computer vision models to identify flood exposure, ground‐level damage and flood reports, and most importantly, urgent needs of affected people. We deploy and test the system during a recent real‐world catastrophe, the 2022 Pakistan floods, to surface critical situational and damage information at the district level. We validated the system's effectiveness through various statistical analyses using official ground‐truth data, showcasing its strong performance and explanatory power of integrating multiple data sources. Moreover, the system was commended by the United Nations Development Programme stationed in Pakistan, as well as local authorities, for pinpointing hard‐hit districts and enhancing disaster response.</abstract><doi>10.1002/aaai.12196</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3918-3230</orcidid><orcidid>https://orcid.org/0000-0003-1395-6290</orcidid><orcidid>https://orcid.org/0000-0002-2448-9694</orcidid><orcidid>https://orcid.org/0000-0003-1850-3688</orcidid><orcidid>https://orcid.org/0000-0001-7882-5502</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0738-4602
ispartof The AI magazine, 2024-12, Vol.45 (4), p.486-501
issn 0738-4602
2371-9621
language eng
recordid cdi_crossref_primary_10_1002_aaai_12196
source ABI/INFORM Global; Social Science Premium Collection (Proquest) (PQ_SDU_P3); Library & Information Science Collection; Wiley Open Access
title Fusing remote and social sensing data for flood impact mapping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusing%20remote%20and%20social%20sensing%20data%20for%20flood%20impact%20mapping&rft.jtitle=The%20AI%20magazine&rft.au=Akhtar,%20Zainab&rft.date=2024-12-01&rft.volume=45&rft.issue=4&rft.spage=486&rft.epage=501&rft.pages=486-501&rft.issn=0738-4602&rft.eissn=2371-9621&rft_id=info:doi/10.1002/aaai.12196&rft_dat=%3Cwiley_cross%3EAAAI12196%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1986-563bd1fa74c187a2448ec4e137d8bad3f9cb876d142c82f2e37cc6f682528d063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true