Loading…
Fusing remote and social sensing data for flood impact mapping
The absence of comprehensive situational awareness information poses a significant challenge for humanitarian organizations during their response efforts. We present Flood Insights, an end‐to‐end system, that ingests data from multiple nontraditional data sources such as remote sensing, social sensi...
Saved in:
Published in: | The AI magazine 2024-12, Vol.45 (4), p.486-501 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1986-563bd1fa74c187a2448ec4e137d8bad3f9cb876d142c82f2e37cc6f682528d063 |
container_end_page | 501 |
container_issue | 4 |
container_start_page | 486 |
container_title | The AI magazine |
container_volume | 45 |
creator | Akhtar, Zainab Qazi, Umair El‐Sakka, Aya Sadiq, Rizwan Ofli, Ferda Imran, Muhammad |
description | The absence of comprehensive situational awareness information poses a significant challenge for humanitarian organizations during their response efforts. We present Flood Insights, an end‐to‐end system, that ingests data from multiple nontraditional data sources such as remote sensing, social sensing, and geospatial data. We employ state‐of‐the‐art natural language processing and computer vision models to identify flood exposure, ground‐level damage and flood reports, and most importantly, urgent needs of affected people. We deploy and test the system during a recent real‐world catastrophe, the 2022 Pakistan floods, to surface critical situational and damage information at the district level. We validated the system's effectiveness through various statistical analyses using official ground‐truth data, showcasing its strong performance and explanatory power of integrating multiple data sources. Moreover, the system was commended by the United Nations Development Programme stationed in Pakistan, as well as local authorities, for pinpointing hard‐hit districts and enhancing disaster response. |
doi_str_mv | 10.1002/aaai.12196 |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_aaai_12196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AAAI12196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1986-563bd1fa74c187a2448ec4e137d8bad3f9cb876d142c82f2e37cc6f682528d063</originalsourceid><addsrcrecordid>eNp9j81KAzEYRYMoWKsbnyBrYWq-JE0yG2EoVgsFN7oO3-RHIvPHZET69rYd167u4p574RByD2wFjPFHREwr4FCqC7LgQkNRKg6XZMG0MIVUjF-Tm5y_GGPKCLUgT9vvnLpPOoa2nwLFztPcu4QNzaE7Nx4npLEfaWz63tPUDugm2uIwHNtbchWxyeHuL5fkY_v8vnkt9m8vu021LxyURhVrJWoPEbV0YDRyKU1wMoDQ3tToRSxdbbTyILkzPPIgtHMqKsPX3HimxJI8zL9u7HMeQ7TDmFocDxaYPZnbk7k9mx9hmOGf1ITDP6Stqmo3b34BZFla2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fusing remote and social sensing data for flood impact mapping</title><source>ABI/INFORM Global</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><source>Library & Information Science Collection</source><source>Wiley Open Access</source><creator>Akhtar, Zainab ; Qazi, Umair ; El‐Sakka, Aya ; Sadiq, Rizwan ; Ofli, Ferda ; Imran, Muhammad</creator><creatorcontrib>Akhtar, Zainab ; Qazi, Umair ; El‐Sakka, Aya ; Sadiq, Rizwan ; Ofli, Ferda ; Imran, Muhammad</creatorcontrib><description>The absence of comprehensive situational awareness information poses a significant challenge for humanitarian organizations during their response efforts. We present Flood Insights, an end‐to‐end system, that ingests data from multiple nontraditional data sources such as remote sensing, social sensing, and geospatial data. We employ state‐of‐the‐art natural language processing and computer vision models to identify flood exposure, ground‐level damage and flood reports, and most importantly, urgent needs of affected people. We deploy and test the system during a recent real‐world catastrophe, the 2022 Pakistan floods, to surface critical situational and damage information at the district level. We validated the system's effectiveness through various statistical analyses using official ground‐truth data, showcasing its strong performance and explanatory power of integrating multiple data sources. Moreover, the system was commended by the United Nations Development Programme stationed in Pakistan, as well as local authorities, for pinpointing hard‐hit districts and enhancing disaster response.</description><identifier>ISSN: 0738-4602</identifier><identifier>EISSN: 2371-9621</identifier><identifier>DOI: 10.1002/aaai.12196</identifier><language>eng</language><ispartof>The AI magazine, 2024-12, Vol.45 (4), p.486-501</ispartof><rights>2024 The Author(s). published by John Wiley & Sons Ltd on behalf of Association for the Advancement of Artificial Intelligence.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1986-563bd1fa74c187a2448ec4e137d8bad3f9cb876d142c82f2e37cc6f682528d063</cites><orcidid>0000-0003-3918-3230 ; 0000-0003-1395-6290 ; 0000-0002-2448-9694 ; 0000-0003-1850-3688 ; 0000-0001-7882-5502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faaai.12196$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faaai.12196$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids></links><search><creatorcontrib>Akhtar, Zainab</creatorcontrib><creatorcontrib>Qazi, Umair</creatorcontrib><creatorcontrib>El‐Sakka, Aya</creatorcontrib><creatorcontrib>Sadiq, Rizwan</creatorcontrib><creatorcontrib>Ofli, Ferda</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><title>Fusing remote and social sensing data for flood impact mapping</title><title>The AI magazine</title><description>The absence of comprehensive situational awareness information poses a significant challenge for humanitarian organizations during their response efforts. We present Flood Insights, an end‐to‐end system, that ingests data from multiple nontraditional data sources such as remote sensing, social sensing, and geospatial data. We employ state‐of‐the‐art natural language processing and computer vision models to identify flood exposure, ground‐level damage and flood reports, and most importantly, urgent needs of affected people. We deploy and test the system during a recent real‐world catastrophe, the 2022 Pakistan floods, to surface critical situational and damage information at the district level. We validated the system's effectiveness through various statistical analyses using official ground‐truth data, showcasing its strong performance and explanatory power of integrating multiple data sources. Moreover, the system was commended by the United Nations Development Programme stationed in Pakistan, as well as local authorities, for pinpointing hard‐hit districts and enhancing disaster response.</description><issn>0738-4602</issn><issn>2371-9621</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9j81KAzEYRYMoWKsbnyBrYWq-JE0yG2EoVgsFN7oO3-RHIvPHZET69rYd167u4p574RByD2wFjPFHREwr4FCqC7LgQkNRKg6XZMG0MIVUjF-Tm5y_GGPKCLUgT9vvnLpPOoa2nwLFztPcu4QNzaE7Nx4npLEfaWz63tPUDugm2uIwHNtbchWxyeHuL5fkY_v8vnkt9m8vu021LxyURhVrJWoPEbV0YDRyKU1wMoDQ3tToRSxdbbTyILkzPPIgtHMqKsPX3HimxJI8zL9u7HMeQ7TDmFocDxaYPZnbk7k9mx9hmOGf1ITDP6Stqmo3b34BZFla2Q</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Akhtar, Zainab</creator><creator>Qazi, Umair</creator><creator>El‐Sakka, Aya</creator><creator>Sadiq, Rizwan</creator><creator>Ofli, Ferda</creator><creator>Imran, Muhammad</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3918-3230</orcidid><orcidid>https://orcid.org/0000-0003-1395-6290</orcidid><orcidid>https://orcid.org/0000-0002-2448-9694</orcidid><orcidid>https://orcid.org/0000-0003-1850-3688</orcidid><orcidid>https://orcid.org/0000-0001-7882-5502</orcidid></search><sort><creationdate>20241201</creationdate><title>Fusing remote and social sensing data for flood impact mapping</title><author>Akhtar, Zainab ; Qazi, Umair ; El‐Sakka, Aya ; Sadiq, Rizwan ; Ofli, Ferda ; Imran, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1986-563bd1fa74c187a2448ec4e137d8bad3f9cb876d142c82f2e37cc6f682528d063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akhtar, Zainab</creatorcontrib><creatorcontrib>Qazi, Umair</creatorcontrib><creatorcontrib>El‐Sakka, Aya</creatorcontrib><creatorcontrib>Sadiq, Rizwan</creatorcontrib><creatorcontrib>Ofli, Ferda</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Free Archive</collection><collection>CrossRef</collection><jtitle>The AI magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akhtar, Zainab</au><au>Qazi, Umair</au><au>El‐Sakka, Aya</au><au>Sadiq, Rizwan</au><au>Ofli, Ferda</au><au>Imran, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusing remote and social sensing data for flood impact mapping</atitle><jtitle>The AI magazine</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>45</volume><issue>4</issue><spage>486</spage><epage>501</epage><pages>486-501</pages><issn>0738-4602</issn><eissn>2371-9621</eissn><abstract>The absence of comprehensive situational awareness information poses a significant challenge for humanitarian organizations during their response efforts. We present Flood Insights, an end‐to‐end system, that ingests data from multiple nontraditional data sources such as remote sensing, social sensing, and geospatial data. We employ state‐of‐the‐art natural language processing and computer vision models to identify flood exposure, ground‐level damage and flood reports, and most importantly, urgent needs of affected people. We deploy and test the system during a recent real‐world catastrophe, the 2022 Pakistan floods, to surface critical situational and damage information at the district level. We validated the system's effectiveness through various statistical analyses using official ground‐truth data, showcasing its strong performance and explanatory power of integrating multiple data sources. Moreover, the system was commended by the United Nations Development Programme stationed in Pakistan, as well as local authorities, for pinpointing hard‐hit districts and enhancing disaster response.</abstract><doi>10.1002/aaai.12196</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3918-3230</orcidid><orcidid>https://orcid.org/0000-0003-1395-6290</orcidid><orcidid>https://orcid.org/0000-0002-2448-9694</orcidid><orcidid>https://orcid.org/0000-0003-1850-3688</orcidid><orcidid>https://orcid.org/0000-0001-7882-5502</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0738-4602 |
ispartof | The AI magazine, 2024-12, Vol.45 (4), p.486-501 |
issn | 0738-4602 2371-9621 |
language | eng |
recordid | cdi_crossref_primary_10_1002_aaai_12196 |
source | ABI/INFORM Global; Social Science Premium Collection (Proquest) (PQ_SDU_P3); Library & Information Science Collection; Wiley Open Access |
title | Fusing remote and social sensing data for flood impact mapping |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusing%20remote%20and%20social%20sensing%20data%20for%20flood%20impact%20mapping&rft.jtitle=The%20AI%20magazine&rft.au=Akhtar,%20Zainab&rft.date=2024-12-01&rft.volume=45&rft.issue=4&rft.spage=486&rft.epage=501&rft.pages=486-501&rft.issn=0738-4602&rft.eissn=2371-9621&rft_id=info:doi/10.1002/aaai.12196&rft_dat=%3Cwiley_cross%3EAAAI12196%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1986-563bd1fa74c187a2448ec4e137d8bad3f9cb876d142c82f2e37cc6f682528d063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |