Loading…

Microstructural Evolution and Microhardness Variations in Pure Titanium Processed by High‐Pressure Torsion

A grade 2 pure titanium with an initial grain size of ≈50 μm is processed by high‐pressure torsion (HPT) at room temperature under an imposed pressure of 6.0 GPa. The microhardness variations are examined and the results show that the disks are reasonably homogeneous after 10 turns of torsional stra...

Full description

Saved in:
Bibliographic Details
Published in:Advanced engineering materials 2020-06, Vol.22 (6), p.n/a
Main Authors: Chen, Wanji, Xu, Jie, Liu, Detong, Bao, Jianxing, Sabbaghianrad, Shima, Shan, Debin, Guo, Bin, Langdon, Terence G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3952-4f08dd581356b02cd95d293bca2f69e9b3ef2d9cb11ccbdb25cddd5f8ca7474d3
cites cdi_FETCH-LOGICAL-c3952-4f08dd581356b02cd95d293bca2f69e9b3ef2d9cb11ccbdb25cddd5f8ca7474d3
container_end_page n/a
container_issue 6
container_start_page
container_title Advanced engineering materials
container_volume 22
creator Chen, Wanji
Xu, Jie
Liu, Detong
Bao, Jianxing
Sabbaghianrad, Shima
Shan, Debin
Guo, Bin
Langdon, Terence G.
description A grade 2 pure titanium with an initial grain size of ≈50 μm is processed by high‐pressure torsion (HPT) at room temperature under an imposed pressure of 6.0 GPa. The microhardness variations are examined and the results show that the disks are reasonably homogeneous after 10 turns of torsional straining. The microstructural evolution is systematically characterized by optical microscopy, X‐ray diffraction, and transmission electron microscopy to provide information on the effect of shear strain on grain size and microstructure. The results demonstrate that the initial coarse structure is gradually refined from the edge to the center of the disk under the shear stress during HPT processing and an ultrafine‐grained pure Ti is achieved with an average grain size of ≈96 nm after 10 turns. A model is developed by considering the formation of subgrain boundaries, twins, and high‐angle grain boundaries for the grain refinement of pure Ti processed by HPT. An ultrafine‐grained pure Ti is achieved with an average grain size of ≈96 nm, and a new model is developed by considering the formation of subgrain boundaries, twins, and high‐angle grain boundaries for the grain refinement of pure Ti during high‐pressure torsion.
doi_str_mv 10.1002/adem.201901462
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adem_201901462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADEM201901462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3952-4f08dd581356b02cd95d293bca2f69e9b3ef2d9cb11ccbdb25cddd5f8ca7474d3</originalsourceid><addsrcrecordid>eNqFkEtOwzAQhi0EEqWwZe0LpHjsOImXVSkUqRVdFLaRX6FGeSA7AXXHEXpGTkLSIliymtHM9400P0LXQCZACL2RxlYTSkAQiBN6gkbAaRrRJM5O-z5mWQQJT87RRQivhAAQYCNUrpz2TWh9p9vOyxLP35uya11TY1kbfNhupTe1DQE_S-_ksAvY1XjdeYs3rpW16yq89o3uGWuw2uGFe9l-fe7Xvp8cqMaHXrtEZ4Usg736qWP0dDffzBbR8vH-YTZdRpoJTqO4IJkxPAPGE0WoNoIbKpjSkhaJsEIxW1AjtALQWhlFuTY9X2RapnEaGzZGk-Pd4bXgbZG_eVdJv8uB5ENW-ZBV_ptVL4ij8OFKu_uHzqe389Wf-w2KPHKN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microstructural Evolution and Microhardness Variations in Pure Titanium Processed by High‐Pressure Torsion</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Chen, Wanji ; Xu, Jie ; Liu, Detong ; Bao, Jianxing ; Sabbaghianrad, Shima ; Shan, Debin ; Guo, Bin ; Langdon, Terence G.</creator><creatorcontrib>Chen, Wanji ; Xu, Jie ; Liu, Detong ; Bao, Jianxing ; Sabbaghianrad, Shima ; Shan, Debin ; Guo, Bin ; Langdon, Terence G.</creatorcontrib><description>A grade 2 pure titanium with an initial grain size of ≈50 μm is processed by high‐pressure torsion (HPT) at room temperature under an imposed pressure of 6.0 GPa. The microhardness variations are examined and the results show that the disks are reasonably homogeneous after 10 turns of torsional straining. The microstructural evolution is systematically characterized by optical microscopy, X‐ray diffraction, and transmission electron microscopy to provide information on the effect of shear strain on grain size and microstructure. The results demonstrate that the initial coarse structure is gradually refined from the edge to the center of the disk under the shear stress during HPT processing and an ultrafine‐grained pure Ti is achieved with an average grain size of ≈96 nm after 10 turns. A model is developed by considering the formation of subgrain boundaries, twins, and high‐angle grain boundaries for the grain refinement of pure Ti processed by HPT. An ultrafine‐grained pure Ti is achieved with an average grain size of ≈96 nm, and a new model is developed by considering the formation of subgrain boundaries, twins, and high‐angle grain boundaries for the grain refinement of pure Ti during high‐pressure torsion.</description><identifier>ISSN: 1438-1656</identifier><identifier>EISSN: 1527-2648</identifier><identifier>DOI: 10.1002/adem.201901462</identifier><language>eng</language><subject>high-pressure torsion ; microforming ; microstructures ; pure titanium ; ultrafine grains</subject><ispartof>Advanced engineering materials, 2020-06, Vol.22 (6), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3952-4f08dd581356b02cd95d293bca2f69e9b3ef2d9cb11ccbdb25cddd5f8ca7474d3</citedby><cites>FETCH-LOGICAL-c3952-4f08dd581356b02cd95d293bca2f69e9b3ef2d9cb11ccbdb25cddd5f8ca7474d3</cites><orcidid>0000-0001-5220-3238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Chen, Wanji</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Liu, Detong</creatorcontrib><creatorcontrib>Bao, Jianxing</creatorcontrib><creatorcontrib>Sabbaghianrad, Shima</creatorcontrib><creatorcontrib>Shan, Debin</creatorcontrib><creatorcontrib>Guo, Bin</creatorcontrib><creatorcontrib>Langdon, Terence G.</creatorcontrib><title>Microstructural Evolution and Microhardness Variations in Pure Titanium Processed by High‐Pressure Torsion</title><title>Advanced engineering materials</title><description>A grade 2 pure titanium with an initial grain size of ≈50 μm is processed by high‐pressure torsion (HPT) at room temperature under an imposed pressure of 6.0 GPa. The microhardness variations are examined and the results show that the disks are reasonably homogeneous after 10 turns of torsional straining. The microstructural evolution is systematically characterized by optical microscopy, X‐ray diffraction, and transmission electron microscopy to provide information on the effect of shear strain on grain size and microstructure. The results demonstrate that the initial coarse structure is gradually refined from the edge to the center of the disk under the shear stress during HPT processing and an ultrafine‐grained pure Ti is achieved with an average grain size of ≈96 nm after 10 turns. A model is developed by considering the formation of subgrain boundaries, twins, and high‐angle grain boundaries for the grain refinement of pure Ti processed by HPT. An ultrafine‐grained pure Ti is achieved with an average grain size of ≈96 nm, and a new model is developed by considering the formation of subgrain boundaries, twins, and high‐angle grain boundaries for the grain refinement of pure Ti during high‐pressure torsion.</description><subject>high-pressure torsion</subject><subject>microforming</subject><subject>microstructures</subject><subject>pure titanium</subject><subject>ultrafine grains</subject><issn>1438-1656</issn><issn>1527-2648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAQhi0EEqWwZe0LpHjsOImXVSkUqRVdFLaRX6FGeSA7AXXHEXpGTkLSIliymtHM9400P0LXQCZACL2RxlYTSkAQiBN6gkbAaRrRJM5O-z5mWQQJT87RRQivhAAQYCNUrpz2TWh9p9vOyxLP35uya11TY1kbfNhupTe1DQE_S-_ksAvY1XjdeYs3rpW16yq89o3uGWuw2uGFe9l-fe7Xvp8cqMaHXrtEZ4Usg736qWP0dDffzBbR8vH-YTZdRpoJTqO4IJkxPAPGE0WoNoIbKpjSkhaJsEIxW1AjtALQWhlFuTY9X2RapnEaGzZGk-Pd4bXgbZG_eVdJv8uB5ENW-ZBV_ptVL4ij8OFKu_uHzqe389Wf-w2KPHKN</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Chen, Wanji</creator><creator>Xu, Jie</creator><creator>Liu, Detong</creator><creator>Bao, Jianxing</creator><creator>Sabbaghianrad, Shima</creator><creator>Shan, Debin</creator><creator>Guo, Bin</creator><creator>Langdon, Terence G.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5220-3238</orcidid></search><sort><creationdate>202006</creationdate><title>Microstructural Evolution and Microhardness Variations in Pure Titanium Processed by High‐Pressure Torsion</title><author>Chen, Wanji ; Xu, Jie ; Liu, Detong ; Bao, Jianxing ; Sabbaghianrad, Shima ; Shan, Debin ; Guo, Bin ; Langdon, Terence G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3952-4f08dd581356b02cd95d293bca2f69e9b3ef2d9cb11ccbdb25cddd5f8ca7474d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>high-pressure torsion</topic><topic>microforming</topic><topic>microstructures</topic><topic>pure titanium</topic><topic>ultrafine grains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wanji</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Liu, Detong</creatorcontrib><creatorcontrib>Bao, Jianxing</creatorcontrib><creatorcontrib>Sabbaghianrad, Shima</creatorcontrib><creatorcontrib>Shan, Debin</creatorcontrib><creatorcontrib>Guo, Bin</creatorcontrib><creatorcontrib>Langdon, Terence G.</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Wanji</au><au>Xu, Jie</au><au>Liu, Detong</au><au>Bao, Jianxing</au><au>Sabbaghianrad, Shima</au><au>Shan, Debin</au><au>Guo, Bin</au><au>Langdon, Terence G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural Evolution and Microhardness Variations in Pure Titanium Processed by High‐Pressure Torsion</atitle><jtitle>Advanced engineering materials</jtitle><date>2020-06</date><risdate>2020</risdate><volume>22</volume><issue>6</issue><epage>n/a</epage><issn>1438-1656</issn><eissn>1527-2648</eissn><abstract>A grade 2 pure titanium with an initial grain size of ≈50 μm is processed by high‐pressure torsion (HPT) at room temperature under an imposed pressure of 6.0 GPa. The microhardness variations are examined and the results show that the disks are reasonably homogeneous after 10 turns of torsional straining. The microstructural evolution is systematically characterized by optical microscopy, X‐ray diffraction, and transmission electron microscopy to provide information on the effect of shear strain on grain size and microstructure. The results demonstrate that the initial coarse structure is gradually refined from the edge to the center of the disk under the shear stress during HPT processing and an ultrafine‐grained pure Ti is achieved with an average grain size of ≈96 nm after 10 turns. A model is developed by considering the formation of subgrain boundaries, twins, and high‐angle grain boundaries for the grain refinement of pure Ti processed by HPT. An ultrafine‐grained pure Ti is achieved with an average grain size of ≈96 nm, and a new model is developed by considering the formation of subgrain boundaries, twins, and high‐angle grain boundaries for the grain refinement of pure Ti during high‐pressure torsion.</abstract><doi>10.1002/adem.201901462</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5220-3238</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1438-1656
ispartof Advanced engineering materials, 2020-06, Vol.22 (6), p.n/a
issn 1438-1656
1527-2648
language eng
recordid cdi_crossref_primary_10_1002_adem_201901462
source Wiley-Blackwell Read & Publish Collection
subjects high-pressure torsion
microforming
microstructures
pure titanium
ultrafine grains
title Microstructural Evolution and Microhardness Variations in Pure Titanium Processed by High‐Pressure Torsion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20Evolution%20and%20Microhardness%20Variations%20in%20Pure%20Titanium%20Processed%20by%20High%E2%80%90Pressure%20Torsion&rft.jtitle=Advanced%20engineering%20materials&rft.au=Chen,%20Wanji&rft.date=2020-06&rft.volume=22&rft.issue=6&rft.epage=n/a&rft.issn=1438-1656&rft.eissn=1527-2648&rft_id=info:doi/10.1002/adem.201901462&rft_dat=%3Cwiley_cross%3EADEM201901462%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3952-4f08dd581356b02cd95d293bca2f69e9b3ef2d9cb11ccbdb25cddd5f8ca7474d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true