Loading…

Surface Topography and Biocompatibility of cp–Ti Grade2 Fabricated by Laser‐Based Powder Bed Fusion: Influence of Printing Orientation and Surface Treatments

The selective laser melting process, commonly known as laser‐based powder bed fusion (LB‐PBF), enables the production of structures with unprecedented degrees of freedom that represents an excellent condition for development of metallic implants for biomedical applications. Herein, the effects of la...

Full description

Saved in:
Bibliographic Details
Published in:Advanced engineering materials 2023-04, Vol.25 (7), p.n/a
Main Authors: Petrusa, Jelena, Meier, Benjamin, Grünbacher, Gerda, Waldhauser, Wolfgang, Eckert, Jürgen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2843-187e4763d6c0a23054c20ee3c2890db76a5f8e30ed6dd287d88ccba15a03f6dd3
container_end_page n/a
container_issue 7
container_start_page
container_title Advanced engineering materials
container_volume 25
creator Petrusa, Jelena
Meier, Benjamin
Grünbacher, Gerda
Waldhauser, Wolfgang
Eckert, Jürgen
description The selective laser melting process, commonly known as laser‐based powder bed fusion (LB‐PBF), enables the production of structures with unprecedented degrees of freedom that represents an excellent condition for development of metallic implants for biomedical applications. Herein, the effects of laser energy density on relative density and microstructure (presence of internal defects) of cp‐TiGd2 fabricated by LB‐PBF are studied. Additionally, the influence of printing orientation and different surface treatments on surface topography and biocompatibility are investigated. The aim of the research is to develop additive manufacturing process parameters that can achieve full density of cp‐TiGd2 with satisfactory biocompatibility, as a low‐cost alternative to biomedical materials such as Ti–6Al–4 V and Ti–6Al–7Nb. A wide range variation of process parameters leads to an optimized process with high density up to 99.97 ± 0.008%, improved surface roughness, and noncytotoxicity in horizontal and inclined as‐built condition, as well as in Al2O3 (blasting angle 0°) condition. Herein, the effects of laser energy density on relative density and microstructure of commercially pure titanium grade2 fabricated by laser‐based powder bed fusion are studied. A wide range variation of process parameters leads to an optimized process with high density up to 99.97 ± 0.008%, improved surface roughness, and noncytotoxicity.
doi_str_mv 10.1002/adem.202201073
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adem_202201073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADEM202201073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2843-187e4763d6c0a23054c20ee3c2890db76a5f8e30ed6dd287d88ccba15a03f6dd3</originalsourceid><addsrcrecordid>eNqFUMtOAjEUbYwmIrp13R8Y7GMexR2gIAkGEnE96bQdrBnaSTuEzI5PMPEL_DW-xCIGl67uyT33nHNzALjFqIcRIndcqnWPIEIQRhk9Ax2ckCwiaczOA44pi3CapJfgyvt3hDBGmHbA18vGlVwouLS1XTlev7WQGwmH2gq7rnmjC13ppoW2hKLe7z6XGk5ciCJwzAunBW-UhEULZ9wrt999DMOUcGG3Ujk4DHC88dqaezg1ZbVRJkQFq4XTptFmBedOK9OEGGt-ck_vOMWbdaD8NbgoeeXVze_sgtfx43L0FM3mk-loMIsEYTGNMMtUnKVUpgJxQlESC4KUooHtI1lkKU9KpihSMpWSsEwyJkTBccIRLcOKdkHv6Cuc9d6pMq-dXnPX5hjlh4LzQ8H5qeAg6B8FW12p9p_rfPDw-Pyn_QaCsYQ3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surface Topography and Biocompatibility of cp–Ti Grade2 Fabricated by Laser‐Based Powder Bed Fusion: Influence of Printing Orientation and Surface Treatments</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Petrusa, Jelena ; Meier, Benjamin ; Grünbacher, Gerda ; Waldhauser, Wolfgang ; Eckert, Jürgen</creator><creatorcontrib>Petrusa, Jelena ; Meier, Benjamin ; Grünbacher, Gerda ; Waldhauser, Wolfgang ; Eckert, Jürgen</creatorcontrib><description>The selective laser melting process, commonly known as laser‐based powder bed fusion (LB‐PBF), enables the production of structures with unprecedented degrees of freedom that represents an excellent condition for development of metallic implants for biomedical applications. Herein, the effects of laser energy density on relative density and microstructure (presence of internal defects) of cp‐TiGd2 fabricated by LB‐PBF are studied. Additionally, the influence of printing orientation and different surface treatments on surface topography and biocompatibility are investigated. The aim of the research is to develop additive manufacturing process parameters that can achieve full density of cp‐TiGd2 with satisfactory biocompatibility, as a low‐cost alternative to biomedical materials such as Ti–6Al–4 V and Ti–6Al–7Nb. A wide range variation of process parameters leads to an optimized process with high density up to 99.97 ± 0.008%, improved surface roughness, and noncytotoxicity in horizontal and inclined as‐built condition, as well as in Al2O3 (blasting angle 0°) condition. Herein, the effects of laser energy density on relative density and microstructure of commercially pure titanium grade2 fabricated by laser‐based powder bed fusion are studied. A wide range variation of process parameters leads to an optimized process with high density up to 99.97 ± 0.008%, improved surface roughness, and noncytotoxicity.</description><identifier>ISSN: 1438-1656</identifier><identifier>EISSN: 1527-2648</identifier><identifier>DOI: 10.1002/adem.202201073</identifier><language>eng</language><subject>additive manufacturing ; biocompatibility ; cp-TiGd2 ; laser-based powder bed fusion ; surface topography</subject><ispartof>Advanced engineering materials, 2023-04, Vol.25 (7), p.n/a</ispartof><rights>2022 The Authors. Advanced Engineering Materials published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2843-187e4763d6c0a23054c20ee3c2890db76a5f8e30ed6dd287d88ccba15a03f6dd3</cites><orcidid>0000-0002-8035-6773 ; 0000-0003-4781-9235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Petrusa, Jelena</creatorcontrib><creatorcontrib>Meier, Benjamin</creatorcontrib><creatorcontrib>Grünbacher, Gerda</creatorcontrib><creatorcontrib>Waldhauser, Wolfgang</creatorcontrib><creatorcontrib>Eckert, Jürgen</creatorcontrib><title>Surface Topography and Biocompatibility of cp–Ti Grade2 Fabricated by Laser‐Based Powder Bed Fusion: Influence of Printing Orientation and Surface Treatments</title><title>Advanced engineering materials</title><description>The selective laser melting process, commonly known as laser‐based powder bed fusion (LB‐PBF), enables the production of structures with unprecedented degrees of freedom that represents an excellent condition for development of metallic implants for biomedical applications. Herein, the effects of laser energy density on relative density and microstructure (presence of internal defects) of cp‐TiGd2 fabricated by LB‐PBF are studied. Additionally, the influence of printing orientation and different surface treatments on surface topography and biocompatibility are investigated. The aim of the research is to develop additive manufacturing process parameters that can achieve full density of cp‐TiGd2 with satisfactory biocompatibility, as a low‐cost alternative to biomedical materials such as Ti–6Al–4 V and Ti–6Al–7Nb. A wide range variation of process parameters leads to an optimized process with high density up to 99.97 ± 0.008%, improved surface roughness, and noncytotoxicity in horizontal and inclined as‐built condition, as well as in Al2O3 (blasting angle 0°) condition. Herein, the effects of laser energy density on relative density and microstructure of commercially pure titanium grade2 fabricated by laser‐based powder bed fusion are studied. A wide range variation of process parameters leads to an optimized process with high density up to 99.97 ± 0.008%, improved surface roughness, and noncytotoxicity.</description><subject>additive manufacturing</subject><subject>biocompatibility</subject><subject>cp-TiGd2</subject><subject>laser-based powder bed fusion</subject><subject>surface topography</subject><issn>1438-1656</issn><issn>1527-2648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFUMtOAjEUbYwmIrp13R8Y7GMexR2gIAkGEnE96bQdrBnaSTuEzI5PMPEL_DW-xCIGl67uyT33nHNzALjFqIcRIndcqnWPIEIQRhk9Ax2ckCwiaczOA44pi3CapJfgyvt3hDBGmHbA18vGlVwouLS1XTlev7WQGwmH2gq7rnmjC13ppoW2hKLe7z6XGk5ciCJwzAunBW-UhEULZ9wrt999DMOUcGG3Ujk4DHC88dqaezg1ZbVRJkQFq4XTptFmBedOK9OEGGt-ck_vOMWbdaD8NbgoeeXVze_sgtfx43L0FM3mk-loMIsEYTGNMMtUnKVUpgJxQlESC4KUooHtI1lkKU9KpihSMpWSsEwyJkTBccIRLcOKdkHv6Cuc9d6pMq-dXnPX5hjlh4LzQ8H5qeAg6B8FW12p9p_rfPDw-Pyn_QaCsYQ3</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Petrusa, Jelena</creator><creator>Meier, Benjamin</creator><creator>Grünbacher, Gerda</creator><creator>Waldhauser, Wolfgang</creator><creator>Eckert, Jürgen</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8035-6773</orcidid><orcidid>https://orcid.org/0000-0003-4781-9235</orcidid></search><sort><creationdate>202304</creationdate><title>Surface Topography and Biocompatibility of cp–Ti Grade2 Fabricated by Laser‐Based Powder Bed Fusion: Influence of Printing Orientation and Surface Treatments</title><author>Petrusa, Jelena ; Meier, Benjamin ; Grünbacher, Gerda ; Waldhauser, Wolfgang ; Eckert, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2843-187e4763d6c0a23054c20ee3c2890db76a5f8e30ed6dd287d88ccba15a03f6dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>additive manufacturing</topic><topic>biocompatibility</topic><topic>cp-TiGd2</topic><topic>laser-based powder bed fusion</topic><topic>surface topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrusa, Jelena</creatorcontrib><creatorcontrib>Meier, Benjamin</creatorcontrib><creatorcontrib>Grünbacher, Gerda</creatorcontrib><creatorcontrib>Waldhauser, Wolfgang</creatorcontrib><creatorcontrib>Eckert, Jürgen</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><jtitle>Advanced engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrusa, Jelena</au><au>Meier, Benjamin</au><au>Grünbacher, Gerda</au><au>Waldhauser, Wolfgang</au><au>Eckert, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Topography and Biocompatibility of cp–Ti Grade2 Fabricated by Laser‐Based Powder Bed Fusion: Influence of Printing Orientation and Surface Treatments</atitle><jtitle>Advanced engineering materials</jtitle><date>2023-04</date><risdate>2023</risdate><volume>25</volume><issue>7</issue><epage>n/a</epage><issn>1438-1656</issn><eissn>1527-2648</eissn><abstract>The selective laser melting process, commonly known as laser‐based powder bed fusion (LB‐PBF), enables the production of structures with unprecedented degrees of freedom that represents an excellent condition for development of metallic implants for biomedical applications. Herein, the effects of laser energy density on relative density and microstructure (presence of internal defects) of cp‐TiGd2 fabricated by LB‐PBF are studied. Additionally, the influence of printing orientation and different surface treatments on surface topography and biocompatibility are investigated. The aim of the research is to develop additive manufacturing process parameters that can achieve full density of cp‐TiGd2 with satisfactory biocompatibility, as a low‐cost alternative to biomedical materials such as Ti–6Al–4 V and Ti–6Al–7Nb. A wide range variation of process parameters leads to an optimized process with high density up to 99.97 ± 0.008%, improved surface roughness, and noncytotoxicity in horizontal and inclined as‐built condition, as well as in Al2O3 (blasting angle 0°) condition. Herein, the effects of laser energy density on relative density and microstructure of commercially pure titanium grade2 fabricated by laser‐based powder bed fusion are studied. A wide range variation of process parameters leads to an optimized process with high density up to 99.97 ± 0.008%, improved surface roughness, and noncytotoxicity.</abstract><doi>10.1002/adem.202201073</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8035-6773</orcidid><orcidid>https://orcid.org/0000-0003-4781-9235</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1438-1656
ispartof Advanced engineering materials, 2023-04, Vol.25 (7), p.n/a
issn 1438-1656
1527-2648
language eng
recordid cdi_crossref_primary_10_1002_adem_202201073
source Wiley-Blackwell Read & Publish Collection
subjects additive manufacturing
biocompatibility
cp-TiGd2
laser-based powder bed fusion
surface topography
title Surface Topography and Biocompatibility of cp–Ti Grade2 Fabricated by Laser‐Based Powder Bed Fusion: Influence of Printing Orientation and Surface Treatments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Topography%20and%20Biocompatibility%20of%20cp%E2%80%93Ti%20Grade2%20Fabricated%20by%20Laser%E2%80%90Based%20Powder%20Bed%20Fusion:%20Influence%20of%20Printing%20Orientation%20and%20Surface%20Treatments&rft.jtitle=Advanced%20engineering%20materials&rft.au=Petrusa,%20Jelena&rft.date=2023-04&rft.volume=25&rft.issue=7&rft.epage=n/a&rft.issn=1438-1656&rft.eissn=1527-2648&rft_id=info:doi/10.1002/adem.202201073&rft_dat=%3Cwiley_cross%3EADEM202201073%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2843-187e4763d6c0a23054c20ee3c2890db76a5f8e30ed6dd287d88ccba15a03f6dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true