Loading…

A Metal Inorganic Framework Designed as a Propellant Burn Rate Modifier

The kinetics of a strategically synthesized burn rate enhancer (BRE) are investigated in its reaction with ammonium perchlorate (AP). The BRE is designed for multifunctionality by 1) producing reactive gases that couple with AP gas production; 2) trapping reactive gases with high surface area; and 3...

Full description

Saved in:
Bibliographic Details
Published in:Advanced engineering materials 2023-11, Vol.25 (21)
Main Authors: Vaz, Neil G., Pantoya, Joseph D., Miller, Kelsea K., de Rezende, Armando, Aquino, Adelia J. A., Demko, Andrew R., Pantoya, Michelle L.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c234t-3c34def72cf9385b969af50e948a39952710f13476dbb76e16091fe71fc1fa9f3
container_end_page
container_issue 21
container_start_page
container_title Advanced engineering materials
container_volume 25
creator Vaz, Neil G.
Pantoya, Joseph D.
Miller, Kelsea K.
de Rezende, Armando
Aquino, Adelia J. A.
Demko, Andrew R.
Pantoya, Michelle L.
description The kinetics of a strategically synthesized burn rate enhancer (BRE) are investigated in its reaction with ammonium perchlorate (AP). The BRE is designed for multifunctionality by 1) producing reactive gases that couple with AP gas production; 2) trapping reactive gases with high surface area; and 3) exposing metal cations to incite exothermic reactions at a temperature coincident with AP decomposition. This study advances inorganic synthesis by introducing a metal inorganic framework (MIF) composed of an aluminum cation (Al +3 ) surrounded by inorganic “linker” molecules of oxidizing species. To increase surface area, a porous, amorphous MIF (a‐MIF) is synthesized by controlling solution properties of an acid–base precipitation reaction. Upon gas generation, high surface area and aluminum‐rich surface of a‐MIF accelerate AP decomposition and induce an exothermic reaction that is otherwise endothermic in thermal equilibrium analysis. AP decomposition rate is advanced by reducing peak onset temperature and increasing decomposition rate with addition of a‐MIF (i.e., from 17% min −1 at 401 °C to 18% min −1 at 365 °C). Enthalpy of AP decomposition increases from +240 J g −1 to −1040 J g −1 . Results introduce an approach for increasing the decomposition rate of solid oxidizers by demonstrating a recipe for designing and synthesizing an MIF.
doi_str_mv 10.1002/adem.202301099
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adem_202301099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adem_202301099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c234t-3c34def72cf9385b969af50e948a39952710f13476dbb76e16091fe71fc1fa9f3</originalsourceid><addsrcrecordid>eNo90M1OwzAQBGALgUQpXDn7BVJ27cSJj6XQUqkVCME52jjrKpCfyg5CvH1bgTjNnEajT4hbhBkCqDuquZspUBoQrD0TE8xUniiTFufHnuoiQZOZS3EV4wcAIqCeiNVcbnmkVq77Ieyob5xcBur4ewif8oFjs-u5lhQlyZcw7LltqR_l_Vfo5SuNLLdD3fiGw7W48NRGvvnLqXhfPr4tnpLN82q9mG8Sp3Q6JtrptGafK-etLrLKGks-A7ZpQdra42EEjzrNTV1VuWE0YNFzjt6hJ-v1VMx-d10YYgzsy31oOgo_JUJ5YihPDOU_gz4AFKVP2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Metal Inorganic Framework Designed as a Propellant Burn Rate Modifier</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Vaz, Neil G. ; Pantoya, Joseph D. ; Miller, Kelsea K. ; de Rezende, Armando ; Aquino, Adelia J. A. ; Demko, Andrew R. ; Pantoya, Michelle L.</creator><creatorcontrib>Vaz, Neil G. ; Pantoya, Joseph D. ; Miller, Kelsea K. ; de Rezende, Armando ; Aquino, Adelia J. A. ; Demko, Andrew R. ; Pantoya, Michelle L.</creatorcontrib><description>The kinetics of a strategically synthesized burn rate enhancer (BRE) are investigated in its reaction with ammonium perchlorate (AP). The BRE is designed for multifunctionality by 1) producing reactive gases that couple with AP gas production; 2) trapping reactive gases with high surface area; and 3) exposing metal cations to incite exothermic reactions at a temperature coincident with AP decomposition. This study advances inorganic synthesis by introducing a metal inorganic framework (MIF) composed of an aluminum cation (Al +3 ) surrounded by inorganic “linker” molecules of oxidizing species. To increase surface area, a porous, amorphous MIF (a‐MIF) is synthesized by controlling solution properties of an acid–base precipitation reaction. Upon gas generation, high surface area and aluminum‐rich surface of a‐MIF accelerate AP decomposition and induce an exothermic reaction that is otherwise endothermic in thermal equilibrium analysis. AP decomposition rate is advanced by reducing peak onset temperature and increasing decomposition rate with addition of a‐MIF (i.e., from 17% min −1 at 401 °C to 18% min −1 at 365 °C). Enthalpy of AP decomposition increases from +240 J g −1 to −1040 J g −1 . Results introduce an approach for increasing the decomposition rate of solid oxidizers by demonstrating a recipe for designing and synthesizing an MIF.</description><identifier>ISSN: 1438-1656</identifier><identifier>EISSN: 1527-2648</identifier><identifier>DOI: 10.1002/adem.202301099</identifier><language>eng</language><ispartof>Advanced engineering materials, 2023-11, Vol.25 (21)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c234t-3c34def72cf9385b969af50e948a39952710f13476dbb76e16091fe71fc1fa9f3</cites><orcidid>0000-0002-0903-3664 ; 0000-0003-4891-6512 ; 0000-0003-0299-1832 ; 0000-0002-9644-919X ; 0000-0002-5474-7068 ; 0000-0002-2781-1044 ; 0000-0002-9385-1749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Vaz, Neil G.</creatorcontrib><creatorcontrib>Pantoya, Joseph D.</creatorcontrib><creatorcontrib>Miller, Kelsea K.</creatorcontrib><creatorcontrib>de Rezende, Armando</creatorcontrib><creatorcontrib>Aquino, Adelia J. A.</creatorcontrib><creatorcontrib>Demko, Andrew R.</creatorcontrib><creatorcontrib>Pantoya, Michelle L.</creatorcontrib><title>A Metal Inorganic Framework Designed as a Propellant Burn Rate Modifier</title><title>Advanced engineering materials</title><description>The kinetics of a strategically synthesized burn rate enhancer (BRE) are investigated in its reaction with ammonium perchlorate (AP). The BRE is designed for multifunctionality by 1) producing reactive gases that couple with AP gas production; 2) trapping reactive gases with high surface area; and 3) exposing metal cations to incite exothermic reactions at a temperature coincident with AP decomposition. This study advances inorganic synthesis by introducing a metal inorganic framework (MIF) composed of an aluminum cation (Al +3 ) surrounded by inorganic “linker” molecules of oxidizing species. To increase surface area, a porous, amorphous MIF (a‐MIF) is synthesized by controlling solution properties of an acid–base precipitation reaction. Upon gas generation, high surface area and aluminum‐rich surface of a‐MIF accelerate AP decomposition and induce an exothermic reaction that is otherwise endothermic in thermal equilibrium analysis. AP decomposition rate is advanced by reducing peak onset temperature and increasing decomposition rate with addition of a‐MIF (i.e., from 17% min −1 at 401 °C to 18% min −1 at 365 °C). Enthalpy of AP decomposition increases from +240 J g −1 to −1040 J g −1 . Results introduce an approach for increasing the decomposition rate of solid oxidizers by demonstrating a recipe for designing and synthesizing an MIF.</description><issn>1438-1656</issn><issn>1527-2648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo90M1OwzAQBGALgUQpXDn7BVJ27cSJj6XQUqkVCME52jjrKpCfyg5CvH1bgTjNnEajT4hbhBkCqDuquZspUBoQrD0TE8xUniiTFufHnuoiQZOZS3EV4wcAIqCeiNVcbnmkVq77Ieyob5xcBur4ewif8oFjs-u5lhQlyZcw7LltqR_l_Vfo5SuNLLdD3fiGw7W48NRGvvnLqXhfPr4tnpLN82q9mG8Sp3Q6JtrptGafK-etLrLKGks-A7ZpQdra42EEjzrNTV1VuWE0YNFzjt6hJ-v1VMx-d10YYgzsy31oOgo_JUJ5YihPDOU_gz4AFKVP2A</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Vaz, Neil G.</creator><creator>Pantoya, Joseph D.</creator><creator>Miller, Kelsea K.</creator><creator>de Rezende, Armando</creator><creator>Aquino, Adelia J. A.</creator><creator>Demko, Andrew R.</creator><creator>Pantoya, Michelle L.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0903-3664</orcidid><orcidid>https://orcid.org/0000-0003-4891-6512</orcidid><orcidid>https://orcid.org/0000-0003-0299-1832</orcidid><orcidid>https://orcid.org/0000-0002-9644-919X</orcidid><orcidid>https://orcid.org/0000-0002-5474-7068</orcidid><orcidid>https://orcid.org/0000-0002-2781-1044</orcidid><orcidid>https://orcid.org/0000-0002-9385-1749</orcidid></search><sort><creationdate>202311</creationdate><title>A Metal Inorganic Framework Designed as a Propellant Burn Rate Modifier</title><author>Vaz, Neil G. ; Pantoya, Joseph D. ; Miller, Kelsea K. ; de Rezende, Armando ; Aquino, Adelia J. A. ; Demko, Andrew R. ; Pantoya, Michelle L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c234t-3c34def72cf9385b969af50e948a39952710f13476dbb76e16091fe71fc1fa9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaz, Neil G.</creatorcontrib><creatorcontrib>Pantoya, Joseph D.</creatorcontrib><creatorcontrib>Miller, Kelsea K.</creatorcontrib><creatorcontrib>de Rezende, Armando</creatorcontrib><creatorcontrib>Aquino, Adelia J. A.</creatorcontrib><creatorcontrib>Demko, Andrew R.</creatorcontrib><creatorcontrib>Pantoya, Michelle L.</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaz, Neil G.</au><au>Pantoya, Joseph D.</au><au>Miller, Kelsea K.</au><au>de Rezende, Armando</au><au>Aquino, Adelia J. A.</au><au>Demko, Andrew R.</au><au>Pantoya, Michelle L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Metal Inorganic Framework Designed as a Propellant Burn Rate Modifier</atitle><jtitle>Advanced engineering materials</jtitle><date>2023-11</date><risdate>2023</risdate><volume>25</volume><issue>21</issue><issn>1438-1656</issn><eissn>1527-2648</eissn><abstract>The kinetics of a strategically synthesized burn rate enhancer (BRE) are investigated in its reaction with ammonium perchlorate (AP). The BRE is designed for multifunctionality by 1) producing reactive gases that couple with AP gas production; 2) trapping reactive gases with high surface area; and 3) exposing metal cations to incite exothermic reactions at a temperature coincident with AP decomposition. This study advances inorganic synthesis by introducing a metal inorganic framework (MIF) composed of an aluminum cation (Al +3 ) surrounded by inorganic “linker” molecules of oxidizing species. To increase surface area, a porous, amorphous MIF (a‐MIF) is synthesized by controlling solution properties of an acid–base precipitation reaction. Upon gas generation, high surface area and aluminum‐rich surface of a‐MIF accelerate AP decomposition and induce an exothermic reaction that is otherwise endothermic in thermal equilibrium analysis. AP decomposition rate is advanced by reducing peak onset temperature and increasing decomposition rate with addition of a‐MIF (i.e., from 17% min −1 at 401 °C to 18% min −1 at 365 °C). Enthalpy of AP decomposition increases from +240 J g −1 to −1040 J g −1 . Results introduce an approach for increasing the decomposition rate of solid oxidizers by demonstrating a recipe for designing and synthesizing an MIF.</abstract><doi>10.1002/adem.202301099</doi><orcidid>https://orcid.org/0000-0002-0903-3664</orcidid><orcidid>https://orcid.org/0000-0003-4891-6512</orcidid><orcidid>https://orcid.org/0000-0003-0299-1832</orcidid><orcidid>https://orcid.org/0000-0002-9644-919X</orcidid><orcidid>https://orcid.org/0000-0002-5474-7068</orcidid><orcidid>https://orcid.org/0000-0002-2781-1044</orcidid><orcidid>https://orcid.org/0000-0002-9385-1749</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1438-1656
ispartof Advanced engineering materials, 2023-11, Vol.25 (21)
issn 1438-1656
1527-2648
language eng
recordid cdi_crossref_primary_10_1002_adem_202301099
source Wiley-Blackwell Read & Publish Collection
title A Metal Inorganic Framework Designed as a Propellant Burn Rate Modifier
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A47%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Metal%20Inorganic%20Framework%20Designed%20as%20a%20Propellant%20Burn%20Rate%20Modifier&rft.jtitle=Advanced%20engineering%20materials&rft.au=Vaz,%20Neil%20G.&rft.date=2023-11&rft.volume=25&rft.issue=21&rft.issn=1438-1656&rft.eissn=1527-2648&rft_id=info:doi/10.1002/adem.202301099&rft_dat=%3Ccrossref%3E10_1002_adem_202301099%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c234t-3c34def72cf9385b969af50e948a39952710f13476dbb76e16091fe71fc1fa9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true