Loading…

Morphology-Controlled Growth of Large-Area Two-Dimensional Ordered Pore Arrays

A solution‐dipping template strategy for large‐area synthesis of morphology‐controlled, ordered pore arrays is reported. The morphology of the pore array can easily be controlled by concentration of the precursor solution and treatment conditions. With decrease of the concentration from a high level...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2004-03, Vol.14 (3), p.283-288
Main Authors: Sun, F., Cai, W., Li, Y., Cao, B., Lei, Y., Zhang, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3915-4aa5c0714141f7869a6982cf58f56496109d59efcd48eab4f5f0d9db0933e9873
cites cdi_FETCH-LOGICAL-c3915-4aa5c0714141f7869a6982cf58f56496109d59efcd48eab4f5f0d9db0933e9873
container_end_page 288
container_issue 3
container_start_page 283
container_title Advanced functional materials
container_volume 14
creator Sun, F.
Cai, W.
Li, Y.
Cao, B.
Lei, Y.
Zhang, L.
description A solution‐dipping template strategy for large‐area synthesis of morphology‐controlled, ordered pore arrays is reported. The morphology of the pore array can easily be controlled by concentration of the precursor solution and treatment conditions. With decrease of the concentration from a high level to a very low level nanostructured complex (pore–hole, and pore–particle) arrays, through‐pore arrays, and even ring arrays can, in turn, be obtained. The pore size is adjustable over a large range by changing the diameter of the template's latex spheres. This synthesis route is universal and can be used for various metals, semiconductors and compounds on any substrate. Such structures may be useful in applications such as energy storage or conversion, especially in integrated next‐generation nanophotonics devices, and biomolecular labeling and identification. A simple, universal strategy for fabricating large‐area two‐dimensional ordered pore arrays (see Figure) based on the solution‐dipping of a colloidal monolayer is presented. Morphologies of arrays can be controlled simply by changing the concentrations of the precursor solutions. The strategy is applicable to various metals, semiconductors, and compounds on any desired substrate.
doi_str_mv 10.1002/adfm.200305055
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_200305055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_PZB7QQJS_K</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3915-4aa5c0714141f7869a6982cf58f56496109d59efcd48eab4f5f0d9db0933e9873</originalsourceid><addsrcrecordid>eNqFkEtPAjEUhRujiYhuXc8fKN5Op9PpEkHwgTwiRuOmKTMtjA6U3JLg_HshGOLO3MW5i_OdxUfINYMWA4hvTOGWrRiAgwAhTkiDpSylHOLs9Piz93NyEcInAJOSJw0yfPa4XvjKz2va8asN-qqyRdRHv90sIu-igcG5pW20JppuPe2WS7sKpV-ZKhphYXFXHnu0URvR1OGSnDlTBXv1m03y2rubdu7pYNR_6LQHNOeKCZoYI3KQLNmdk1mqTKqyOHcicyJNVMpAFUJZlxdJZs0sccJBoYoZKM6tyiRvktZhN0cfAlqn11guDdaagd7b0Hsb-mhjB6gDsC0rW__T1u1u7_kvSw9sGTb2-8ga_NKp5FLot2Ffjz9u5WTy-KKf-A8EK3MJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Morphology-Controlled Growth of Large-Area Two-Dimensional Ordered Pore Arrays</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Sun, F. ; Cai, W. ; Li, Y. ; Cao, B. ; Lei, Y. ; Zhang, L.</creator><creatorcontrib>Sun, F. ; Cai, W. ; Li, Y. ; Cao, B. ; Lei, Y. ; Zhang, L.</creatorcontrib><description>A solution‐dipping template strategy for large‐area synthesis of morphology‐controlled, ordered pore arrays is reported. The morphology of the pore array can easily be controlled by concentration of the precursor solution and treatment conditions. With decrease of the concentration from a high level to a very low level nanostructured complex (pore–hole, and pore–particle) arrays, through‐pore arrays, and even ring arrays can, in turn, be obtained. The pore size is adjustable over a large range by changing the diameter of the template's latex spheres. This synthesis route is universal and can be used for various metals, semiconductors and compounds on any substrate. Such structures may be useful in applications such as energy storage or conversion, especially in integrated next‐generation nanophotonics devices, and biomolecular labeling and identification. A simple, universal strategy for fabricating large‐area two‐dimensional ordered pore arrays (see Figure) based on the solution‐dipping of a colloidal monolayer is presented. Morphologies of arrays can be controlled simply by changing the concentrations of the precursor solutions. The strategy is applicable to various metals, semiconductors, and compounds on any desired substrate.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.200305055</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>colloid ; Ordered arrays ; Ordered arrays, 2D ; Template-directed synthesis ; Templates ; Templates, colloid</subject><ispartof>Advanced functional materials, 2004-03, Vol.14 (3), p.283-288</ispartof><rights>Copyright © 2004 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3915-4aa5c0714141f7869a6982cf58f56496109d59efcd48eab4f5f0d9db0933e9873</citedby><cites>FETCH-LOGICAL-c3915-4aa5c0714141f7869a6982cf58f56496109d59efcd48eab4f5f0d9db0933e9873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sun, F.</creatorcontrib><creatorcontrib>Cai, W.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Cao, B.</creatorcontrib><creatorcontrib>Lei, Y.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><title>Morphology-Controlled Growth of Large-Area Two-Dimensional Ordered Pore Arrays</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>A solution‐dipping template strategy for large‐area synthesis of morphology‐controlled, ordered pore arrays is reported. The morphology of the pore array can easily be controlled by concentration of the precursor solution and treatment conditions. With decrease of the concentration from a high level to a very low level nanostructured complex (pore–hole, and pore–particle) arrays, through‐pore arrays, and even ring arrays can, in turn, be obtained. The pore size is adjustable over a large range by changing the diameter of the template's latex spheres. This synthesis route is universal and can be used for various metals, semiconductors and compounds on any substrate. Such structures may be useful in applications such as energy storage or conversion, especially in integrated next‐generation nanophotonics devices, and biomolecular labeling and identification. A simple, universal strategy for fabricating large‐area two‐dimensional ordered pore arrays (see Figure) based on the solution‐dipping of a colloidal monolayer is presented. Morphologies of arrays can be controlled simply by changing the concentrations of the precursor solutions. The strategy is applicable to various metals, semiconductors, and compounds on any desired substrate.</description><subject>colloid</subject><subject>Ordered arrays</subject><subject>Ordered arrays, 2D</subject><subject>Template-directed synthesis</subject><subject>Templates</subject><subject>Templates, colloid</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPAjEUhRujiYhuXc8fKN5Op9PpEkHwgTwiRuOmKTMtjA6U3JLg_HshGOLO3MW5i_OdxUfINYMWA4hvTOGWrRiAgwAhTkiDpSylHOLs9Piz93NyEcInAJOSJw0yfPa4XvjKz2va8asN-qqyRdRHv90sIu-igcG5pW20JppuPe2WS7sKpV-ZKhphYXFXHnu0URvR1OGSnDlTBXv1m03y2rubdu7pYNR_6LQHNOeKCZoYI3KQLNmdk1mqTKqyOHcicyJNVMpAFUJZlxdJZs0sccJBoYoZKM6tyiRvktZhN0cfAlqn11guDdaagd7b0Hsb-mhjB6gDsC0rW__T1u1u7_kvSw9sGTb2-8ga_NKp5FLot2Ffjz9u5WTy-KKf-A8EK3MJ</recordid><startdate>200403</startdate><enddate>200403</enddate><creator>Sun, F.</creator><creator>Cai, W.</creator><creator>Li, Y.</creator><creator>Cao, B.</creator><creator>Lei, Y.</creator><creator>Zhang, L.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200403</creationdate><title>Morphology-Controlled Growth of Large-Area Two-Dimensional Ordered Pore Arrays</title><author>Sun, F. ; Cai, W. ; Li, Y. ; Cao, B. ; Lei, Y. ; Zhang, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3915-4aa5c0714141f7869a6982cf58f56496109d59efcd48eab4f5f0d9db0933e9873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>colloid</topic><topic>Ordered arrays</topic><topic>Ordered arrays, 2D</topic><topic>Template-directed synthesis</topic><topic>Templates</topic><topic>Templates, colloid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, F.</creatorcontrib><creatorcontrib>Cai, W.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Cao, B.</creatorcontrib><creatorcontrib>Lei, Y.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, F.</au><au>Cai, W.</au><au>Li, Y.</au><au>Cao, B.</au><au>Lei, Y.</au><au>Zhang, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphology-Controlled Growth of Large-Area Two-Dimensional Ordered Pore Arrays</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2004-03</date><risdate>2004</risdate><volume>14</volume><issue>3</issue><spage>283</spage><epage>288</epage><pages>283-288</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>A solution‐dipping template strategy for large‐area synthesis of morphology‐controlled, ordered pore arrays is reported. The morphology of the pore array can easily be controlled by concentration of the precursor solution and treatment conditions. With decrease of the concentration from a high level to a very low level nanostructured complex (pore–hole, and pore–particle) arrays, through‐pore arrays, and even ring arrays can, in turn, be obtained. The pore size is adjustable over a large range by changing the diameter of the template's latex spheres. This synthesis route is universal and can be used for various metals, semiconductors and compounds on any substrate. Such structures may be useful in applications such as energy storage or conversion, especially in integrated next‐generation nanophotonics devices, and biomolecular labeling and identification. A simple, universal strategy for fabricating large‐area two‐dimensional ordered pore arrays (see Figure) based on the solution‐dipping of a colloidal monolayer is presented. Morphologies of arrays can be controlled simply by changing the concentrations of the precursor solutions. The strategy is applicable to various metals, semiconductors, and compounds on any desired substrate.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.200305055</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2004-03, Vol.14 (3), p.283-288
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_200305055
source Wiley-Blackwell Read & Publish Collection
subjects colloid
Ordered arrays
Ordered arrays, 2D
Template-directed synthesis
Templates
Templates, colloid
title Morphology-Controlled Growth of Large-Area Two-Dimensional Ordered Pore Arrays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphology-Controlled%20Growth%20of%20Large-Area%20Two-Dimensional%20Ordered%20Pore%20Arrays&rft.jtitle=Advanced%20functional%20materials&rft.au=Sun,%20F.&rft.date=2004-03&rft.volume=14&rft.issue=3&rft.spage=283&rft.epage=288&rft.pages=283-288&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.200305055&rft_dat=%3Cistex_cross%3Eark_67375_WNG_PZB7QQJS_K%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3915-4aa5c0714141f7869a6982cf58f56496109d59efcd48eab4f5f0d9db0933e9873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true