Loading…
Morphology-Controlled Growth of Large-Area Two-Dimensional Ordered Pore Arrays
A solution‐dipping template strategy for large‐area synthesis of morphology‐controlled, ordered pore arrays is reported. The morphology of the pore array can easily be controlled by concentration of the precursor solution and treatment conditions. With decrease of the concentration from a high level...
Saved in:
Published in: | Advanced functional materials 2004-03, Vol.14 (3), p.283-288 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3915-4aa5c0714141f7869a6982cf58f56496109d59efcd48eab4f5f0d9db0933e9873 |
---|---|
cites | cdi_FETCH-LOGICAL-c3915-4aa5c0714141f7869a6982cf58f56496109d59efcd48eab4f5f0d9db0933e9873 |
container_end_page | 288 |
container_issue | 3 |
container_start_page | 283 |
container_title | Advanced functional materials |
container_volume | 14 |
creator | Sun, F. Cai, W. Li, Y. Cao, B. Lei, Y. Zhang, L. |
description | A solution‐dipping template strategy for large‐area synthesis of morphology‐controlled, ordered pore arrays is reported. The morphology of the pore array can easily be controlled by concentration of the precursor solution and treatment conditions. With decrease of the concentration from a high level to a very low level nanostructured complex (pore–hole, and pore–particle) arrays, through‐pore arrays, and even ring arrays can, in turn, be obtained. The pore size is adjustable over a large range by changing the diameter of the template's latex spheres. This synthesis route is universal and can be used for various metals, semiconductors and compounds on any substrate. Such structures may be useful in applications such as energy storage or conversion, especially in integrated next‐generation nanophotonics devices, and biomolecular labeling and identification.
A simple, universal strategy for fabricating large‐area two‐dimensional ordered pore arrays (see Figure) based on the solution‐dipping of a colloidal monolayer is presented. Morphologies of arrays can be controlled simply by changing the concentrations of the precursor solutions. The strategy is applicable to various metals, semiconductors, and compounds on any desired substrate. |
doi_str_mv | 10.1002/adfm.200305055 |
format | article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_200305055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_PZB7QQJS_K</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3915-4aa5c0714141f7869a6982cf58f56496109d59efcd48eab4f5f0d9db0933e9873</originalsourceid><addsrcrecordid>eNqFkEtPAjEUhRujiYhuXc8fKN5Op9PpEkHwgTwiRuOmKTMtjA6U3JLg_HshGOLO3MW5i_OdxUfINYMWA4hvTOGWrRiAgwAhTkiDpSylHOLs9Piz93NyEcInAJOSJw0yfPa4XvjKz2va8asN-qqyRdRHv90sIu-igcG5pW20JppuPe2WS7sKpV-ZKhphYXFXHnu0URvR1OGSnDlTBXv1m03y2rubdu7pYNR_6LQHNOeKCZoYI3KQLNmdk1mqTKqyOHcicyJNVMpAFUJZlxdJZs0sccJBoYoZKM6tyiRvktZhN0cfAlqn11guDdaagd7b0Hsb-mhjB6gDsC0rW__T1u1u7_kvSw9sGTb2-8ga_NKp5FLot2Ffjz9u5WTy-KKf-A8EK3MJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Morphology-Controlled Growth of Large-Area Two-Dimensional Ordered Pore Arrays</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Sun, F. ; Cai, W. ; Li, Y. ; Cao, B. ; Lei, Y. ; Zhang, L.</creator><creatorcontrib>Sun, F. ; Cai, W. ; Li, Y. ; Cao, B. ; Lei, Y. ; Zhang, L.</creatorcontrib><description>A solution‐dipping template strategy for large‐area synthesis of morphology‐controlled, ordered pore arrays is reported. The morphology of the pore array can easily be controlled by concentration of the precursor solution and treatment conditions. With decrease of the concentration from a high level to a very low level nanostructured complex (pore–hole, and pore–particle) arrays, through‐pore arrays, and even ring arrays can, in turn, be obtained. The pore size is adjustable over a large range by changing the diameter of the template's latex spheres. This synthesis route is universal and can be used for various metals, semiconductors and compounds on any substrate. Such structures may be useful in applications such as energy storage or conversion, especially in integrated next‐generation nanophotonics devices, and biomolecular labeling and identification.
A simple, universal strategy for fabricating large‐area two‐dimensional ordered pore arrays (see Figure) based on the solution‐dipping of a colloidal monolayer is presented. Morphologies of arrays can be controlled simply by changing the concentrations of the precursor solutions. The strategy is applicable to various metals, semiconductors, and compounds on any desired substrate.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.200305055</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>colloid ; Ordered arrays ; Ordered arrays, 2D ; Template-directed synthesis ; Templates ; Templates, colloid</subject><ispartof>Advanced functional materials, 2004-03, Vol.14 (3), p.283-288</ispartof><rights>Copyright © 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3915-4aa5c0714141f7869a6982cf58f56496109d59efcd48eab4f5f0d9db0933e9873</citedby><cites>FETCH-LOGICAL-c3915-4aa5c0714141f7869a6982cf58f56496109d59efcd48eab4f5f0d9db0933e9873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sun, F.</creatorcontrib><creatorcontrib>Cai, W.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Cao, B.</creatorcontrib><creatorcontrib>Lei, Y.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><title>Morphology-Controlled Growth of Large-Area Two-Dimensional Ordered Pore Arrays</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>A solution‐dipping template strategy for large‐area synthesis of morphology‐controlled, ordered pore arrays is reported. The morphology of the pore array can easily be controlled by concentration of the precursor solution and treatment conditions. With decrease of the concentration from a high level to a very low level nanostructured complex (pore–hole, and pore–particle) arrays, through‐pore arrays, and even ring arrays can, in turn, be obtained. The pore size is adjustable over a large range by changing the diameter of the template's latex spheres. This synthesis route is universal and can be used for various metals, semiconductors and compounds on any substrate. Such structures may be useful in applications such as energy storage or conversion, especially in integrated next‐generation nanophotonics devices, and biomolecular labeling and identification.
A simple, universal strategy for fabricating large‐area two‐dimensional ordered pore arrays (see Figure) based on the solution‐dipping of a colloidal monolayer is presented. Morphologies of arrays can be controlled simply by changing the concentrations of the precursor solutions. The strategy is applicable to various metals, semiconductors, and compounds on any desired substrate.</description><subject>colloid</subject><subject>Ordered arrays</subject><subject>Ordered arrays, 2D</subject><subject>Template-directed synthesis</subject><subject>Templates</subject><subject>Templates, colloid</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPAjEUhRujiYhuXc8fKN5Op9PpEkHwgTwiRuOmKTMtjA6U3JLg_HshGOLO3MW5i_OdxUfINYMWA4hvTOGWrRiAgwAhTkiDpSylHOLs9Piz93NyEcInAJOSJw0yfPa4XvjKz2va8asN-qqyRdRHv90sIu-igcG5pW20JppuPe2WS7sKpV-ZKhphYXFXHnu0URvR1OGSnDlTBXv1m03y2rubdu7pYNR_6LQHNOeKCZoYI3KQLNmdk1mqTKqyOHcicyJNVMpAFUJZlxdJZs0sccJBoYoZKM6tyiRvktZhN0cfAlqn11guDdaagd7b0Hsb-mhjB6gDsC0rW__T1u1u7_kvSw9sGTb2-8ga_NKp5FLot2Ffjz9u5WTy-KKf-A8EK3MJ</recordid><startdate>200403</startdate><enddate>200403</enddate><creator>Sun, F.</creator><creator>Cai, W.</creator><creator>Li, Y.</creator><creator>Cao, B.</creator><creator>Lei, Y.</creator><creator>Zhang, L.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200403</creationdate><title>Morphology-Controlled Growth of Large-Area Two-Dimensional Ordered Pore Arrays</title><author>Sun, F. ; Cai, W. ; Li, Y. ; Cao, B. ; Lei, Y. ; Zhang, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3915-4aa5c0714141f7869a6982cf58f56496109d59efcd48eab4f5f0d9db0933e9873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>colloid</topic><topic>Ordered arrays</topic><topic>Ordered arrays, 2D</topic><topic>Template-directed synthesis</topic><topic>Templates</topic><topic>Templates, colloid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, F.</creatorcontrib><creatorcontrib>Cai, W.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Cao, B.</creatorcontrib><creatorcontrib>Lei, Y.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, F.</au><au>Cai, W.</au><au>Li, Y.</au><au>Cao, B.</au><au>Lei, Y.</au><au>Zhang, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphology-Controlled Growth of Large-Area Two-Dimensional Ordered Pore Arrays</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2004-03</date><risdate>2004</risdate><volume>14</volume><issue>3</issue><spage>283</spage><epage>288</epage><pages>283-288</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>A solution‐dipping template strategy for large‐area synthesis of morphology‐controlled, ordered pore arrays is reported. The morphology of the pore array can easily be controlled by concentration of the precursor solution and treatment conditions. With decrease of the concentration from a high level to a very low level nanostructured complex (pore–hole, and pore–particle) arrays, through‐pore arrays, and even ring arrays can, in turn, be obtained. The pore size is adjustable over a large range by changing the diameter of the template's latex spheres. This synthesis route is universal and can be used for various metals, semiconductors and compounds on any substrate. Such structures may be useful in applications such as energy storage or conversion, especially in integrated next‐generation nanophotonics devices, and biomolecular labeling and identification.
A simple, universal strategy for fabricating large‐area two‐dimensional ordered pore arrays (see Figure) based on the solution‐dipping of a colloidal monolayer is presented. Morphologies of arrays can be controlled simply by changing the concentrations of the precursor solutions. The strategy is applicable to various metals, semiconductors, and compounds on any desired substrate.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.200305055</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2004-03, Vol.14 (3), p.283-288 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adfm_200305055 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | colloid Ordered arrays Ordered arrays, 2D Template-directed synthesis Templates Templates, colloid |
title | Morphology-Controlled Growth of Large-Area Two-Dimensional Ordered Pore Arrays |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphology-Controlled%20Growth%20of%20Large-Area%20Two-Dimensional%20Ordered%20Pore%20Arrays&rft.jtitle=Advanced%20functional%20materials&rft.au=Sun,%20F.&rft.date=2004-03&rft.volume=14&rft.issue=3&rft.spage=283&rft.epage=288&rft.pages=283-288&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.200305055&rft_dat=%3Cistex_cross%3Eark_67375_WNG_PZB7QQJS_K%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3915-4aa5c0714141f7869a6982cf58f56496109d59efcd48eab4f5f0d9db0933e9873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |