Loading…

Mussel‐Inspired Polydopamine‐Treated Reinforced Composite Membranes with Self‐Supported CeO x Radical Scavengers for Highly Stable PEM Fuel Cells

The physical and chemical degradations of a state‐of‐the‐art proton exchange membrane (PEM) composed of a perfluorinated sulfonic acid (PFSA) ionomer and polytetrafluoroethylene (PTFE) reinforcement are induced through the repeated expansion/shrinkage of the ionomer and free radical attacks. Such de...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2019-01, Vol.29 (3)
Main Authors: Yoon, Ki Ro, Lee, Kyung Ah, Jo, Sunhee, Yook, Seung Ho, Lee, Kwan Young, Kim, Il‐Doo, Kim, Jin Young
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c849-361b07c79dd716a1aa2d237d9a7cd18234fa7d2e48e2290043ee809b755fc9e43
cites cdi_FETCH-LOGICAL-c849-361b07c79dd716a1aa2d237d9a7cd18234fa7d2e48e2290043ee809b755fc9e43
container_end_page
container_issue 3
container_start_page
container_title Advanced functional materials
container_volume 29
creator Yoon, Ki Ro
Lee, Kyung Ah
Jo, Sunhee
Yook, Seung Ho
Lee, Kwan Young
Kim, Il‐Doo
Kim, Jin Young
description The physical and chemical degradations of a state‐of‐the‐art proton exchange membrane (PEM) composed of a perfluorinated sulfonic acid (PFSA) ionomer and polytetrafluoroethylene (PTFE) reinforcement are induced through the repeated expansion/shrinkage of the ionomer and free radical attacks. Such degradations essentially originate from the loose structure of the materials and the low interactive binding force among the PEM constituents. In this study, the need for simplified design principles of adhesives led to the use of mussel‐inspired polydopamine (PD) as an interfacial modifier for the fabrication of highly durable PEM. Indeed, a self‐polymerized dopamine layer acts as an interfacial glue, and enables efficient impregnation of a hydrophilic PFSA ionomer into porous hydrophobic PTFE with high packing density, resulting in strong adhesion between the PTFE and the PFSA polymers in the membrane. In addition, the redox property of the PD end groups spontaneously reduces the partial Ce salts in the ionomer solution and anchors them to the PD@PTFE substrate as defective cerium oxide (CeO x ) nanoparticles, reducing the dissolution and subsequent migration under cell operations. Finally, a CePD@PTFE membrane shows outstanding durability in fuel cells under an accelerated humidity cycling test with a reduction in the degree of physical and chemical failures.
doi_str_mv 10.1002/adfm.201806929
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_201806929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_201806929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c849-361b07c79dd716a1aa2d237d9a7cd18234fa7d2e48e2290043ee809b755fc9e43</originalsourceid><addsrcrecordid>eNo9kLtOwzAYhS0EEqWwMvsFUnxJ43hEUUsrtWrVdGCLHPtPa-RcZLdANx6BjffjSUgFYjpHR_rO8CF0T8mIEsIelKnqESM0JYlk8gINaEKTiBOWXv53-nyNbkJ4IYQKweMB-loeQwD3_fE5b0JnPRi8bt3JtJ2qbQP9vvWgDv28AdtUrdd9zdq6a4M9AF5CXXrVQMBv9rDHObiqR_Jj17X-DGWwwu94o4zVyuFcq1doduAD7p_wzO727oTzgyod4PVkiadHcD3jXLhFV5VyAe7-coi208k2m0WL1dM8e1xEOo1lxBNaEqGFNEbQRFGlmGFcGKmENjRlPK6UMAziFBiThMQcICWyFONxpSXEfIhGv7fatyF4qIrO21r5U0FJcbZanK0W_1b5D_KkcIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mussel‐Inspired Polydopamine‐Treated Reinforced Composite Membranes with Self‐Supported CeO x Radical Scavengers for Highly Stable PEM Fuel Cells</title><source>Wiley</source><creator>Yoon, Ki Ro ; Lee, Kyung Ah ; Jo, Sunhee ; Yook, Seung Ho ; Lee, Kwan Young ; Kim, Il‐Doo ; Kim, Jin Young</creator><creatorcontrib>Yoon, Ki Ro ; Lee, Kyung Ah ; Jo, Sunhee ; Yook, Seung Ho ; Lee, Kwan Young ; Kim, Il‐Doo ; Kim, Jin Young</creatorcontrib><description>The physical and chemical degradations of a state‐of‐the‐art proton exchange membrane (PEM) composed of a perfluorinated sulfonic acid (PFSA) ionomer and polytetrafluoroethylene (PTFE) reinforcement are induced through the repeated expansion/shrinkage of the ionomer and free radical attacks. Such degradations essentially originate from the loose structure of the materials and the low interactive binding force among the PEM constituents. In this study, the need for simplified design principles of adhesives led to the use of mussel‐inspired polydopamine (PD) as an interfacial modifier for the fabrication of highly durable PEM. Indeed, a self‐polymerized dopamine layer acts as an interfacial glue, and enables efficient impregnation of a hydrophilic PFSA ionomer into porous hydrophobic PTFE with high packing density, resulting in strong adhesion between the PTFE and the PFSA polymers in the membrane. In addition, the redox property of the PD end groups spontaneously reduces the partial Ce salts in the ionomer solution and anchors them to the PD@PTFE substrate as defective cerium oxide (CeO x ) nanoparticles, reducing the dissolution and subsequent migration under cell operations. Finally, a CePD@PTFE membrane shows outstanding durability in fuel cells under an accelerated humidity cycling test with a reduction in the degree of physical and chemical failures.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201806929</identifier><language>eng</language><ispartof>Advanced functional materials, 2019-01, Vol.29 (3)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c849-361b07c79dd716a1aa2d237d9a7cd18234fa7d2e48e2290043ee809b755fc9e43</citedby><cites>FETCH-LOGICAL-c849-361b07c79dd716a1aa2d237d9a7cd18234fa7d2e48e2290043ee809b755fc9e43</cites><orcidid>0000-0003-3532-7911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yoon, Ki Ro</creatorcontrib><creatorcontrib>Lee, Kyung Ah</creatorcontrib><creatorcontrib>Jo, Sunhee</creatorcontrib><creatorcontrib>Yook, Seung Ho</creatorcontrib><creatorcontrib>Lee, Kwan Young</creatorcontrib><creatorcontrib>Kim, Il‐Doo</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><title>Mussel‐Inspired Polydopamine‐Treated Reinforced Composite Membranes with Self‐Supported CeO x Radical Scavengers for Highly Stable PEM Fuel Cells</title><title>Advanced functional materials</title><description>The physical and chemical degradations of a state‐of‐the‐art proton exchange membrane (PEM) composed of a perfluorinated sulfonic acid (PFSA) ionomer and polytetrafluoroethylene (PTFE) reinforcement are induced through the repeated expansion/shrinkage of the ionomer and free radical attacks. Such degradations essentially originate from the loose structure of the materials and the low interactive binding force among the PEM constituents. In this study, the need for simplified design principles of adhesives led to the use of mussel‐inspired polydopamine (PD) as an interfacial modifier for the fabrication of highly durable PEM. Indeed, a self‐polymerized dopamine layer acts as an interfacial glue, and enables efficient impregnation of a hydrophilic PFSA ionomer into porous hydrophobic PTFE with high packing density, resulting in strong adhesion between the PTFE and the PFSA polymers in the membrane. In addition, the redox property of the PD end groups spontaneously reduces the partial Ce salts in the ionomer solution and anchors them to the PD@PTFE substrate as defective cerium oxide (CeO x ) nanoparticles, reducing the dissolution and subsequent migration under cell operations. Finally, a CePD@PTFE membrane shows outstanding durability in fuel cells under an accelerated humidity cycling test with a reduction in the degree of physical and chemical failures.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kLtOwzAYhS0EEqWwMvsFUnxJ43hEUUsrtWrVdGCLHPtPa-RcZLdANx6BjffjSUgFYjpHR_rO8CF0T8mIEsIelKnqESM0JYlk8gINaEKTiBOWXv53-nyNbkJ4IYQKweMB-loeQwD3_fE5b0JnPRi8bt3JtJ2qbQP9vvWgDv28AdtUrdd9zdq6a4M9AF5CXXrVQMBv9rDHObiqR_Jj17X-DGWwwu94o4zVyuFcq1doduAD7p_wzO727oTzgyod4PVkiadHcD3jXLhFV5VyAe7-coi208k2m0WL1dM8e1xEOo1lxBNaEqGFNEbQRFGlmGFcGKmENjRlPK6UMAziFBiThMQcICWyFONxpSXEfIhGv7fatyF4qIrO21r5U0FJcbZanK0W_1b5D_KkcIs</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Yoon, Ki Ro</creator><creator>Lee, Kyung Ah</creator><creator>Jo, Sunhee</creator><creator>Yook, Seung Ho</creator><creator>Lee, Kwan Young</creator><creator>Kim, Il‐Doo</creator><creator>Kim, Jin Young</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3532-7911</orcidid></search><sort><creationdate>201901</creationdate><title>Mussel‐Inspired Polydopamine‐Treated Reinforced Composite Membranes with Self‐Supported CeO x Radical Scavengers for Highly Stable PEM Fuel Cells</title><author>Yoon, Ki Ro ; Lee, Kyung Ah ; Jo, Sunhee ; Yook, Seung Ho ; Lee, Kwan Young ; Kim, Il‐Doo ; Kim, Jin Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c849-361b07c79dd716a1aa2d237d9a7cd18234fa7d2e48e2290043ee809b755fc9e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Ki Ro</creatorcontrib><creatorcontrib>Lee, Kyung Ah</creatorcontrib><creatorcontrib>Jo, Sunhee</creatorcontrib><creatorcontrib>Yook, Seung Ho</creatorcontrib><creatorcontrib>Lee, Kwan Young</creatorcontrib><creatorcontrib>Kim, Il‐Doo</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Ki Ro</au><au>Lee, Kyung Ah</au><au>Jo, Sunhee</au><au>Yook, Seung Ho</au><au>Lee, Kwan Young</au><au>Kim, Il‐Doo</au><au>Kim, Jin Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mussel‐Inspired Polydopamine‐Treated Reinforced Composite Membranes with Self‐Supported CeO x Radical Scavengers for Highly Stable PEM Fuel Cells</atitle><jtitle>Advanced functional materials</jtitle><date>2019-01</date><risdate>2019</risdate><volume>29</volume><issue>3</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The physical and chemical degradations of a state‐of‐the‐art proton exchange membrane (PEM) composed of a perfluorinated sulfonic acid (PFSA) ionomer and polytetrafluoroethylene (PTFE) reinforcement are induced through the repeated expansion/shrinkage of the ionomer and free radical attacks. Such degradations essentially originate from the loose structure of the materials and the low interactive binding force among the PEM constituents. In this study, the need for simplified design principles of adhesives led to the use of mussel‐inspired polydopamine (PD) as an interfacial modifier for the fabrication of highly durable PEM. Indeed, a self‐polymerized dopamine layer acts as an interfacial glue, and enables efficient impregnation of a hydrophilic PFSA ionomer into porous hydrophobic PTFE with high packing density, resulting in strong adhesion between the PTFE and the PFSA polymers in the membrane. In addition, the redox property of the PD end groups spontaneously reduces the partial Ce salts in the ionomer solution and anchors them to the PD@PTFE substrate as defective cerium oxide (CeO x ) nanoparticles, reducing the dissolution and subsequent migration under cell operations. Finally, a CePD@PTFE membrane shows outstanding durability in fuel cells under an accelerated humidity cycling test with a reduction in the degree of physical and chemical failures.</abstract><doi>10.1002/adfm.201806929</doi><orcidid>https://orcid.org/0000-0003-3532-7911</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2019-01, Vol.29 (3)
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_201806929
source Wiley
title Mussel‐Inspired Polydopamine‐Treated Reinforced Composite Membranes with Self‐Supported CeO x Radical Scavengers for Highly Stable PEM Fuel Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mussel%E2%80%90Inspired%20Polydopamine%E2%80%90Treated%20Reinforced%20Composite%20Membranes%20with%20Self%E2%80%90Supported%20CeO%20x%20Radical%20Scavengers%20for%20Highly%20Stable%20PEM%20Fuel%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Yoon,%20Ki%20Ro&rft.date=2019-01&rft.volume=29&rft.issue=3&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201806929&rft_dat=%3Ccrossref%3E10_1002_adfm_201806929%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c849-361b07c79dd716a1aa2d237d9a7cd18234fa7d2e48e2290043ee809b755fc9e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true