Loading…

δ‐CsPbI 3 Intermediate Phase Growth Assisted Sequential Deposition Boosts Stable and High‐Efficiency Triple Cation Perovskite Solar Cells

Cs/FA/MA triple cation perovskite films have been well developed in the antisolvent dripping method, attributable to its outstanding photovoltaic and stability performances. However, a facile and effective strategy is still lacking for fabricating high‐quality large‐grain triple cation perovskite fi...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2020-02, Vol.30 (7)
Main Authors: Wang, Shaofu, Jin, Junjun, Qi, Yuyang, Liu, Pei, Xia, Yu, Jiang, Yun, He, Rong‐Xiang, Chen, Bolei, Liu, Yumin, Zhao, Xing‐Zhong
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cs/FA/MA triple cation perovskite films have been well developed in the antisolvent dripping method, attributable to its outstanding photovoltaic and stability performances. However, a facile and effective strategy is still lacking for fabricating high‐quality large‐grain triple cation perovskite films via sequential deposition method a, which is one of the key technologies for high efficiency perovskite solar cells. To address this issue, a δ‐CsPbI 3 intermediate phase growth (CsPbI 3 ‐IPG) assisted sequential deposition method is demonstrated for the first time. The approach not only achieves incorporation of controllable cesium into (FAPbI 3 ) 1– x (MAPbBr 3 ) x perovskite, but also enlarges the perovskite grains, manipulates the crystallization, modulates the bandgap, and improves the stability of final perovskite films. The photovoltaic performances of the devices based on these Cs/FA/MA perovskite films with various amounts of the δ‐CsPbI 3 intermediate phase are investigated systematically. Benefiting from moderate cesium incorporation and intermediate phase‐assisted grain growth, the optimized Cs/FA/MA perovskite solar cells exhibit a significantly improved power conversion efficiency and operational stability of unencapsulated devices. This facile strategy provides new insights into the compositional engineering of triple or quadruple cation perovskite materials with enlarged grains and superior stability via a sequential deposition method.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201908343