Loading…
Directional Thermal Diffusion Realizing Inorganic Sb 2 Te 3 /Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility
Inorganic films possess much higher thermoelectric performance than their organic counterparts, but their poor flexibilities limit their practical applications. Here, Sb 2 Te 3 /Te x hybrid thin films with high thermoelectric performance and flexibility, fabricated via a novel directional thermal di...
Saved in:
Published in: | Advanced functional materials 2022-11, Vol.32 (45) |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c843-40ee0703f431c9e6f0c4a0607309e17396c293a2a5d4bdc55b1c4daee003bf163 |
---|---|
cites | cdi_FETCH-LOGICAL-c843-40ee0703f431c9e6f0c4a0607309e17396c293a2a5d4bdc55b1c4daee003bf163 |
container_end_page | |
container_issue | 45 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 32 |
creator | Wei, Meng Shi, Xiao‐Lei Zheng, Zhuang‐Hao Li, Fu Liu, Wei‐Di Xiang, Li‐Ping Xie, Yang‐Su Chen, Yue‐Xing Duan, Jing‐Yi Ma, Hong‐Li Liang, Guang‐Xing Zhang, Xiang‐Hua Fan, Ping Chen, Zhi‐Gang |
description | Inorganic films possess much higher thermoelectric performance than their organic counterparts, but their poor flexibilities limit their practical applications. Here, Sb
2
Te
3
/Te
x
hybrid thin films with high thermoelectric performance and flexibility, fabricated via a novel directional thermal diffusion reaction growth method are reported. The directional thermal diffusion enables rationally tuning the Te content in Sb
2
Te
3
, which optimizes the carrier density and leads to a significantly enhanced power factor of
>
20 µW cm
–1
K
–2
, confirmed by both first‐principles calculations and experiments; while dense boundaries between Te and Sb
2
Te
3
nanophases, contribute to the low thermal conductivity of ≈0.86 W m
–1
K
–1
, both induce a high
ZT
of ≈1 in (Sb
2
Te
3
)(Te)
1.5
at 453 K, ranking as the top value among the reported flexible films. Besides, thin films also exhibit extraordinary flexibility. A rationally designed flexible device composed of (Sb
2
Te
3
)(Te)
1.5
thin films as
p
‐type legs and Bi
2
Te
3
thin films as
n
‐type legs shows a high power density of
>
280 µW cm
–2
at a temperature difference of 20 K, indicating a great potential for sustainably charging low‐power electronics. |
doi_str_mv | 10.1002/adfm.202207903 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202207903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202207903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c843-40ee0703f431c9e6f0c4a0607309e17396c293a2a5d4bdc55b1c4daee003bf163</originalsourceid><addsrcrecordid>eNo9kM1KAzEUhYMoWKtb13mBaW9-OtNZSmttoaDoLNwNmUzSXslkJKlofYA-tymVbu65HPjOgUPIPYMRA-Bj1dpuxIFzKEoQF2TAcpZnAvj08vyz92tyE-MHACsKIQfkMMdg9A57rxyttiZ0Sedo7VdMHn01yuEv-g1d-T5slEdN3xrKaWWooON0l_smYJtQ9HSBrov0G3dbusTN9pTXG5cKQgJfTLB9KvDaUOVbunDmBxt0uNvfkiurXDR3_zok1eKxmi2z9fPTavawzvRUikyCMVCAsFIwXZrcgpYKcigElIYVosw1L4XiatLKptWTScO0bFWCQDSW5WJIRqdYHfoYg7H1Z8BOhX3NoD6OWB9HrM8jij984mZb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Directional Thermal Diffusion Realizing Inorganic Sb 2 Te 3 /Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility</title><source>Wiley</source><creator>Wei, Meng ; Shi, Xiao‐Lei ; Zheng, Zhuang‐Hao ; Li, Fu ; Liu, Wei‐Di ; Xiang, Li‐Ping ; Xie, Yang‐Su ; Chen, Yue‐Xing ; Duan, Jing‐Yi ; Ma, Hong‐Li ; Liang, Guang‐Xing ; Zhang, Xiang‐Hua ; Fan, Ping ; Chen, Zhi‐Gang</creator><creatorcontrib>Wei, Meng ; Shi, Xiao‐Lei ; Zheng, Zhuang‐Hao ; Li, Fu ; Liu, Wei‐Di ; Xiang, Li‐Ping ; Xie, Yang‐Su ; Chen, Yue‐Xing ; Duan, Jing‐Yi ; Ma, Hong‐Li ; Liang, Guang‐Xing ; Zhang, Xiang‐Hua ; Fan, Ping ; Chen, Zhi‐Gang</creatorcontrib><description>Inorganic films possess much higher thermoelectric performance than their organic counterparts, but their poor flexibilities limit their practical applications. Here, Sb
2
Te
3
/Te
x
hybrid thin films with high thermoelectric performance and flexibility, fabricated via a novel directional thermal diffusion reaction growth method are reported. The directional thermal diffusion enables rationally tuning the Te content in Sb
2
Te
3
, which optimizes the carrier density and leads to a significantly enhanced power factor of
>
20 µW cm
–1
K
–2
, confirmed by both first‐principles calculations and experiments; while dense boundaries between Te and Sb
2
Te
3
nanophases, contribute to the low thermal conductivity of ≈0.86 W m
–1
K
–1
, both induce a high
ZT
of ≈1 in (Sb
2
Te
3
)(Te)
1.5
at 453 K, ranking as the top value among the reported flexible films. Besides, thin films also exhibit extraordinary flexibility. A rationally designed flexible device composed of (Sb
2
Te
3
)(Te)
1.5
thin films as
p
‐type legs and Bi
2
Te
3
thin films as
n
‐type legs shows a high power density of
>
280 µW cm
–2
at a temperature difference of 20 K, indicating a great potential for sustainably charging low‐power electronics.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202207903</identifier><language>eng</language><ispartof>Advanced functional materials, 2022-11, Vol.32 (45)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c843-40ee0703f431c9e6f0c4a0607309e17396c293a2a5d4bdc55b1c4daee003bf163</citedby><cites>FETCH-LOGICAL-c843-40ee0703f431c9e6f0c4a0607309e17396c293a2a5d4bdc55b1c4daee003bf163</cites><orcidid>0000-0002-9309-7993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wei, Meng</creatorcontrib><creatorcontrib>Shi, Xiao‐Lei</creatorcontrib><creatorcontrib>Zheng, Zhuang‐Hao</creatorcontrib><creatorcontrib>Li, Fu</creatorcontrib><creatorcontrib>Liu, Wei‐Di</creatorcontrib><creatorcontrib>Xiang, Li‐Ping</creatorcontrib><creatorcontrib>Xie, Yang‐Su</creatorcontrib><creatorcontrib>Chen, Yue‐Xing</creatorcontrib><creatorcontrib>Duan, Jing‐Yi</creatorcontrib><creatorcontrib>Ma, Hong‐Li</creatorcontrib><creatorcontrib>Liang, Guang‐Xing</creatorcontrib><creatorcontrib>Zhang, Xiang‐Hua</creatorcontrib><creatorcontrib>Fan, Ping</creatorcontrib><creatorcontrib>Chen, Zhi‐Gang</creatorcontrib><title>Directional Thermal Diffusion Realizing Inorganic Sb 2 Te 3 /Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility</title><title>Advanced functional materials</title><description>Inorganic films possess much higher thermoelectric performance than their organic counterparts, but their poor flexibilities limit their practical applications. Here, Sb
2
Te
3
/Te
x
hybrid thin films with high thermoelectric performance and flexibility, fabricated via a novel directional thermal diffusion reaction growth method are reported. The directional thermal diffusion enables rationally tuning the Te content in Sb
2
Te
3
, which optimizes the carrier density and leads to a significantly enhanced power factor of
>
20 µW cm
–1
K
–2
, confirmed by both first‐principles calculations and experiments; while dense boundaries between Te and Sb
2
Te
3
nanophases, contribute to the low thermal conductivity of ≈0.86 W m
–1
K
–1
, both induce a high
ZT
of ≈1 in (Sb
2
Te
3
)(Te)
1.5
at 453 K, ranking as the top value among the reported flexible films. Besides, thin films also exhibit extraordinary flexibility. A rationally designed flexible device composed of (Sb
2
Te
3
)(Te)
1.5
thin films as
p
‐type legs and Bi
2
Te
3
thin films as
n
‐type legs shows a high power density of
>
280 µW cm
–2
at a temperature difference of 20 K, indicating a great potential for sustainably charging low‐power electronics.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEUhYMoWKtb13mBaW9-OtNZSmttoaDoLNwNmUzSXslkJKlofYA-tymVbu65HPjOgUPIPYMRA-Bj1dpuxIFzKEoQF2TAcpZnAvj08vyz92tyE-MHACsKIQfkMMdg9A57rxyttiZ0Sedo7VdMHn01yuEv-g1d-T5slEdN3xrKaWWooON0l_smYJtQ9HSBrov0G3dbusTN9pTXG5cKQgJfTLB9KvDaUOVbunDmBxt0uNvfkiurXDR3_zok1eKxmi2z9fPTavawzvRUikyCMVCAsFIwXZrcgpYKcigElIYVosw1L4XiatLKptWTScO0bFWCQDSW5WJIRqdYHfoYg7H1Z8BOhX3NoD6OWB9HrM8jij984mZb</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Wei, Meng</creator><creator>Shi, Xiao‐Lei</creator><creator>Zheng, Zhuang‐Hao</creator><creator>Li, Fu</creator><creator>Liu, Wei‐Di</creator><creator>Xiang, Li‐Ping</creator><creator>Xie, Yang‐Su</creator><creator>Chen, Yue‐Xing</creator><creator>Duan, Jing‐Yi</creator><creator>Ma, Hong‐Li</creator><creator>Liang, Guang‐Xing</creator><creator>Zhang, Xiang‐Hua</creator><creator>Fan, Ping</creator><creator>Chen, Zhi‐Gang</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9309-7993</orcidid></search><sort><creationdate>202211</creationdate><title>Directional Thermal Diffusion Realizing Inorganic Sb 2 Te 3 /Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility</title><author>Wei, Meng ; Shi, Xiao‐Lei ; Zheng, Zhuang‐Hao ; Li, Fu ; Liu, Wei‐Di ; Xiang, Li‐Ping ; Xie, Yang‐Su ; Chen, Yue‐Xing ; Duan, Jing‐Yi ; Ma, Hong‐Li ; Liang, Guang‐Xing ; Zhang, Xiang‐Hua ; Fan, Ping ; Chen, Zhi‐Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c843-40ee0703f431c9e6f0c4a0607309e17396c293a2a5d4bdc55b1c4daee003bf163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Meng</creatorcontrib><creatorcontrib>Shi, Xiao‐Lei</creatorcontrib><creatorcontrib>Zheng, Zhuang‐Hao</creatorcontrib><creatorcontrib>Li, Fu</creatorcontrib><creatorcontrib>Liu, Wei‐Di</creatorcontrib><creatorcontrib>Xiang, Li‐Ping</creatorcontrib><creatorcontrib>Xie, Yang‐Su</creatorcontrib><creatorcontrib>Chen, Yue‐Xing</creatorcontrib><creatorcontrib>Duan, Jing‐Yi</creatorcontrib><creatorcontrib>Ma, Hong‐Li</creatorcontrib><creatorcontrib>Liang, Guang‐Xing</creatorcontrib><creatorcontrib>Zhang, Xiang‐Hua</creatorcontrib><creatorcontrib>Fan, Ping</creatorcontrib><creatorcontrib>Chen, Zhi‐Gang</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Meng</au><au>Shi, Xiao‐Lei</au><au>Zheng, Zhuang‐Hao</au><au>Li, Fu</au><au>Liu, Wei‐Di</au><au>Xiang, Li‐Ping</au><au>Xie, Yang‐Su</au><au>Chen, Yue‐Xing</au><au>Duan, Jing‐Yi</au><au>Ma, Hong‐Li</au><au>Liang, Guang‐Xing</au><au>Zhang, Xiang‐Hua</au><au>Fan, Ping</au><au>Chen, Zhi‐Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directional Thermal Diffusion Realizing Inorganic Sb 2 Te 3 /Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility</atitle><jtitle>Advanced functional materials</jtitle><date>2022-11</date><risdate>2022</risdate><volume>32</volume><issue>45</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Inorganic films possess much higher thermoelectric performance than their organic counterparts, but their poor flexibilities limit their practical applications. Here, Sb
2
Te
3
/Te
x
hybrid thin films with high thermoelectric performance and flexibility, fabricated via a novel directional thermal diffusion reaction growth method are reported. The directional thermal diffusion enables rationally tuning the Te content in Sb
2
Te
3
, which optimizes the carrier density and leads to a significantly enhanced power factor of
>
20 µW cm
–1
K
–2
, confirmed by both first‐principles calculations and experiments; while dense boundaries between Te and Sb
2
Te
3
nanophases, contribute to the low thermal conductivity of ≈0.86 W m
–1
K
–1
, both induce a high
ZT
of ≈1 in (Sb
2
Te
3
)(Te)
1.5
at 453 K, ranking as the top value among the reported flexible films. Besides, thin films also exhibit extraordinary flexibility. A rationally designed flexible device composed of (Sb
2
Te
3
)(Te)
1.5
thin films as
p
‐type legs and Bi
2
Te
3
thin films as
n
‐type legs shows a high power density of
>
280 µW cm
–2
at a temperature difference of 20 K, indicating a great potential for sustainably charging low‐power electronics.</abstract><doi>10.1002/adfm.202207903</doi><orcidid>https://orcid.org/0000-0002-9309-7993</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2022-11, Vol.32 (45) |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adfm_202207903 |
source | Wiley |
title | Directional Thermal Diffusion Realizing Inorganic Sb 2 Te 3 /Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directional%20Thermal%20Diffusion%20Realizing%20Inorganic%20Sb%202%20Te%203%20/Te%20Hybrid%20Thin%20Films%20with%20High%20Thermoelectric%20Performance%20and%20Flexibility&rft.jtitle=Advanced%20functional%20materials&rft.au=Wei,%20Meng&rft.date=2022-11&rft.volume=32&rft.issue=45&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202207903&rft_dat=%3Ccrossref%3E10_1002_adfm_202207903%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c843-40ee0703f431c9e6f0c4a0607309e17396c293a2a5d4bdc55b1c4daee003bf163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |