Loading…

Directional Thermal Diffusion Realizing Inorganic Sb 2 Te 3 /Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility

Inorganic films possess much higher thermoelectric performance than their organic counterparts, but their poor flexibilities limit their practical applications. Here, Sb 2 Te 3 /Te x hybrid thin films with high thermoelectric performance and flexibility, fabricated via a novel directional thermal di...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2022-11, Vol.32 (45)
Main Authors: Wei, Meng, Shi, Xiao‐Lei, Zheng, Zhuang‐Hao, Li, Fu, Liu, Wei‐Di, Xiang, Li‐Ping, Xie, Yang‐Su, Chen, Yue‐Xing, Duan, Jing‐Yi, Ma, Hong‐Li, Liang, Guang‐Xing, Zhang, Xiang‐Hua, Fan, Ping, Chen, Zhi‐Gang
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c843-40ee0703f431c9e6f0c4a0607309e17396c293a2a5d4bdc55b1c4daee003bf163
cites cdi_FETCH-LOGICAL-c843-40ee0703f431c9e6f0c4a0607309e17396c293a2a5d4bdc55b1c4daee003bf163
container_end_page
container_issue 45
container_start_page
container_title Advanced functional materials
container_volume 32
creator Wei, Meng
Shi, Xiao‐Lei
Zheng, Zhuang‐Hao
Li, Fu
Liu, Wei‐Di
Xiang, Li‐Ping
Xie, Yang‐Su
Chen, Yue‐Xing
Duan, Jing‐Yi
Ma, Hong‐Li
Liang, Guang‐Xing
Zhang, Xiang‐Hua
Fan, Ping
Chen, Zhi‐Gang
description Inorganic films possess much higher thermoelectric performance than their organic counterparts, but their poor flexibilities limit their practical applications. Here, Sb 2 Te 3 /Te x hybrid thin films with high thermoelectric performance and flexibility, fabricated via a novel directional thermal diffusion reaction growth method are reported. The directional thermal diffusion enables rationally tuning the Te content in Sb 2 Te 3 , which optimizes the carrier density and leads to a significantly enhanced power factor of > 20 µW cm –1  K –2 , confirmed by both first‐principles calculations and experiments; while dense boundaries between Te and Sb 2 Te 3 nanophases, contribute to the low thermal conductivity of ≈0.86 W m –1  K –1 , both induce a high ZT of ≈1 in (Sb 2 Te 3 )(Te) 1.5 at 453 K, ranking as the top value among the reported flexible films. Besides, thin films also exhibit extraordinary flexibility. A rationally designed flexible device composed of (Sb 2 Te 3 )(Te) 1.5 thin films as p ‐type legs and Bi 2 Te 3 thin films as n ‐type legs shows a high power density of > 280 µW cm –2 at a temperature difference of 20 K, indicating a great potential for sustainably charging low‐power electronics.
doi_str_mv 10.1002/adfm.202207903
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202207903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202207903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c843-40ee0703f431c9e6f0c4a0607309e17396c293a2a5d4bdc55b1c4daee003bf163</originalsourceid><addsrcrecordid>eNo9kM1KAzEUhYMoWKtb13mBaW9-OtNZSmttoaDoLNwNmUzSXslkJKlofYA-tymVbu65HPjOgUPIPYMRA-Bj1dpuxIFzKEoQF2TAcpZnAvj08vyz92tyE-MHACsKIQfkMMdg9A57rxyttiZ0Sedo7VdMHn01yuEv-g1d-T5slEdN3xrKaWWooON0l_smYJtQ9HSBrov0G3dbusTN9pTXG5cKQgJfTLB9KvDaUOVbunDmBxt0uNvfkiurXDR3_zok1eKxmi2z9fPTavawzvRUikyCMVCAsFIwXZrcgpYKcigElIYVosw1L4XiatLKptWTScO0bFWCQDSW5WJIRqdYHfoYg7H1Z8BOhX3NoD6OWB9HrM8jij984mZb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Directional Thermal Diffusion Realizing Inorganic Sb 2 Te 3 /Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility</title><source>Wiley</source><creator>Wei, Meng ; Shi, Xiao‐Lei ; Zheng, Zhuang‐Hao ; Li, Fu ; Liu, Wei‐Di ; Xiang, Li‐Ping ; Xie, Yang‐Su ; Chen, Yue‐Xing ; Duan, Jing‐Yi ; Ma, Hong‐Li ; Liang, Guang‐Xing ; Zhang, Xiang‐Hua ; Fan, Ping ; Chen, Zhi‐Gang</creator><creatorcontrib>Wei, Meng ; Shi, Xiao‐Lei ; Zheng, Zhuang‐Hao ; Li, Fu ; Liu, Wei‐Di ; Xiang, Li‐Ping ; Xie, Yang‐Su ; Chen, Yue‐Xing ; Duan, Jing‐Yi ; Ma, Hong‐Li ; Liang, Guang‐Xing ; Zhang, Xiang‐Hua ; Fan, Ping ; Chen, Zhi‐Gang</creatorcontrib><description>Inorganic films possess much higher thermoelectric performance than their organic counterparts, but their poor flexibilities limit their practical applications. Here, Sb 2 Te 3 /Te x hybrid thin films with high thermoelectric performance and flexibility, fabricated via a novel directional thermal diffusion reaction growth method are reported. The directional thermal diffusion enables rationally tuning the Te content in Sb 2 Te 3 , which optimizes the carrier density and leads to a significantly enhanced power factor of &gt; 20 µW cm –1  K –2 , confirmed by both first‐principles calculations and experiments; while dense boundaries between Te and Sb 2 Te 3 nanophases, contribute to the low thermal conductivity of ≈0.86 W m –1  K –1 , both induce a high ZT of ≈1 in (Sb 2 Te 3 )(Te) 1.5 at 453 K, ranking as the top value among the reported flexible films. Besides, thin films also exhibit extraordinary flexibility. A rationally designed flexible device composed of (Sb 2 Te 3 )(Te) 1.5 thin films as p ‐type legs and Bi 2 Te 3 thin films as n ‐type legs shows a high power density of &gt; 280 µW cm –2 at a temperature difference of 20 K, indicating a great potential for sustainably charging low‐power electronics.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202207903</identifier><language>eng</language><ispartof>Advanced functional materials, 2022-11, Vol.32 (45)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c843-40ee0703f431c9e6f0c4a0607309e17396c293a2a5d4bdc55b1c4daee003bf163</citedby><cites>FETCH-LOGICAL-c843-40ee0703f431c9e6f0c4a0607309e17396c293a2a5d4bdc55b1c4daee003bf163</cites><orcidid>0000-0002-9309-7993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wei, Meng</creatorcontrib><creatorcontrib>Shi, Xiao‐Lei</creatorcontrib><creatorcontrib>Zheng, Zhuang‐Hao</creatorcontrib><creatorcontrib>Li, Fu</creatorcontrib><creatorcontrib>Liu, Wei‐Di</creatorcontrib><creatorcontrib>Xiang, Li‐Ping</creatorcontrib><creatorcontrib>Xie, Yang‐Su</creatorcontrib><creatorcontrib>Chen, Yue‐Xing</creatorcontrib><creatorcontrib>Duan, Jing‐Yi</creatorcontrib><creatorcontrib>Ma, Hong‐Li</creatorcontrib><creatorcontrib>Liang, Guang‐Xing</creatorcontrib><creatorcontrib>Zhang, Xiang‐Hua</creatorcontrib><creatorcontrib>Fan, Ping</creatorcontrib><creatorcontrib>Chen, Zhi‐Gang</creatorcontrib><title>Directional Thermal Diffusion Realizing Inorganic Sb 2 Te 3 /Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility</title><title>Advanced functional materials</title><description>Inorganic films possess much higher thermoelectric performance than their organic counterparts, but their poor flexibilities limit their practical applications. Here, Sb 2 Te 3 /Te x hybrid thin films with high thermoelectric performance and flexibility, fabricated via a novel directional thermal diffusion reaction growth method are reported. The directional thermal diffusion enables rationally tuning the Te content in Sb 2 Te 3 , which optimizes the carrier density and leads to a significantly enhanced power factor of &gt; 20 µW cm –1  K –2 , confirmed by both first‐principles calculations and experiments; while dense boundaries between Te and Sb 2 Te 3 nanophases, contribute to the low thermal conductivity of ≈0.86 W m –1  K –1 , both induce a high ZT of ≈1 in (Sb 2 Te 3 )(Te) 1.5 at 453 K, ranking as the top value among the reported flexible films. Besides, thin films also exhibit extraordinary flexibility. A rationally designed flexible device composed of (Sb 2 Te 3 )(Te) 1.5 thin films as p ‐type legs and Bi 2 Te 3 thin films as n ‐type legs shows a high power density of &gt; 280 µW cm –2 at a temperature difference of 20 K, indicating a great potential for sustainably charging low‐power electronics.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEUhYMoWKtb13mBaW9-OtNZSmttoaDoLNwNmUzSXslkJKlofYA-tymVbu65HPjOgUPIPYMRA-Bj1dpuxIFzKEoQF2TAcpZnAvj08vyz92tyE-MHACsKIQfkMMdg9A57rxyttiZ0Sedo7VdMHn01yuEv-g1d-T5slEdN3xrKaWWooON0l_smYJtQ9HSBrov0G3dbusTN9pTXG5cKQgJfTLB9KvDaUOVbunDmBxt0uNvfkiurXDR3_zok1eKxmi2z9fPTavawzvRUikyCMVCAsFIwXZrcgpYKcigElIYVosw1L4XiatLKptWTScO0bFWCQDSW5WJIRqdYHfoYg7H1Z8BOhX3NoD6OWB9HrM8jij984mZb</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Wei, Meng</creator><creator>Shi, Xiao‐Lei</creator><creator>Zheng, Zhuang‐Hao</creator><creator>Li, Fu</creator><creator>Liu, Wei‐Di</creator><creator>Xiang, Li‐Ping</creator><creator>Xie, Yang‐Su</creator><creator>Chen, Yue‐Xing</creator><creator>Duan, Jing‐Yi</creator><creator>Ma, Hong‐Li</creator><creator>Liang, Guang‐Xing</creator><creator>Zhang, Xiang‐Hua</creator><creator>Fan, Ping</creator><creator>Chen, Zhi‐Gang</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9309-7993</orcidid></search><sort><creationdate>202211</creationdate><title>Directional Thermal Diffusion Realizing Inorganic Sb 2 Te 3 /Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility</title><author>Wei, Meng ; Shi, Xiao‐Lei ; Zheng, Zhuang‐Hao ; Li, Fu ; Liu, Wei‐Di ; Xiang, Li‐Ping ; Xie, Yang‐Su ; Chen, Yue‐Xing ; Duan, Jing‐Yi ; Ma, Hong‐Li ; Liang, Guang‐Xing ; Zhang, Xiang‐Hua ; Fan, Ping ; Chen, Zhi‐Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c843-40ee0703f431c9e6f0c4a0607309e17396c293a2a5d4bdc55b1c4daee003bf163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Meng</creatorcontrib><creatorcontrib>Shi, Xiao‐Lei</creatorcontrib><creatorcontrib>Zheng, Zhuang‐Hao</creatorcontrib><creatorcontrib>Li, Fu</creatorcontrib><creatorcontrib>Liu, Wei‐Di</creatorcontrib><creatorcontrib>Xiang, Li‐Ping</creatorcontrib><creatorcontrib>Xie, Yang‐Su</creatorcontrib><creatorcontrib>Chen, Yue‐Xing</creatorcontrib><creatorcontrib>Duan, Jing‐Yi</creatorcontrib><creatorcontrib>Ma, Hong‐Li</creatorcontrib><creatorcontrib>Liang, Guang‐Xing</creatorcontrib><creatorcontrib>Zhang, Xiang‐Hua</creatorcontrib><creatorcontrib>Fan, Ping</creatorcontrib><creatorcontrib>Chen, Zhi‐Gang</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Meng</au><au>Shi, Xiao‐Lei</au><au>Zheng, Zhuang‐Hao</au><au>Li, Fu</au><au>Liu, Wei‐Di</au><au>Xiang, Li‐Ping</au><au>Xie, Yang‐Su</au><au>Chen, Yue‐Xing</au><au>Duan, Jing‐Yi</au><au>Ma, Hong‐Li</au><au>Liang, Guang‐Xing</au><au>Zhang, Xiang‐Hua</au><au>Fan, Ping</au><au>Chen, Zhi‐Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directional Thermal Diffusion Realizing Inorganic Sb 2 Te 3 /Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility</atitle><jtitle>Advanced functional materials</jtitle><date>2022-11</date><risdate>2022</risdate><volume>32</volume><issue>45</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Inorganic films possess much higher thermoelectric performance than their organic counterparts, but their poor flexibilities limit their practical applications. Here, Sb 2 Te 3 /Te x hybrid thin films with high thermoelectric performance and flexibility, fabricated via a novel directional thermal diffusion reaction growth method are reported. The directional thermal diffusion enables rationally tuning the Te content in Sb 2 Te 3 , which optimizes the carrier density and leads to a significantly enhanced power factor of &gt; 20 µW cm –1  K –2 , confirmed by both first‐principles calculations and experiments; while dense boundaries between Te and Sb 2 Te 3 nanophases, contribute to the low thermal conductivity of ≈0.86 W m –1  K –1 , both induce a high ZT of ≈1 in (Sb 2 Te 3 )(Te) 1.5 at 453 K, ranking as the top value among the reported flexible films. Besides, thin films also exhibit extraordinary flexibility. A rationally designed flexible device composed of (Sb 2 Te 3 )(Te) 1.5 thin films as p ‐type legs and Bi 2 Te 3 thin films as n ‐type legs shows a high power density of &gt; 280 µW cm –2 at a temperature difference of 20 K, indicating a great potential for sustainably charging low‐power electronics.</abstract><doi>10.1002/adfm.202207903</doi><orcidid>https://orcid.org/0000-0002-9309-7993</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-11, Vol.32 (45)
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202207903
source Wiley
title Directional Thermal Diffusion Realizing Inorganic Sb 2 Te 3 /Te Hybrid Thin Films with High Thermoelectric Performance and Flexibility
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directional%20Thermal%20Diffusion%20Realizing%20Inorganic%20Sb%202%20Te%203%20/Te%20Hybrid%20Thin%20Films%20with%20High%20Thermoelectric%20Performance%20and%20Flexibility&rft.jtitle=Advanced%20functional%20materials&rft.au=Wei,%20Meng&rft.date=2022-11&rft.volume=32&rft.issue=45&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202207903&rft_dat=%3Ccrossref%3E10_1002_adfm_202207903%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c843-40ee0703f431c9e6f0c4a0607309e17396c293a2a5d4bdc55b1c4daee003bf163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true