Loading…

Bismuth‐Based Metal‐Organic Frameworks for Water Vapor Capture and Energy Storage

Transforming water vapor into electricity is a critical method for advancing renewable energy supply and alleviating the global energy crisis. However, conventional materials typically struggle to achieve a balance between energy storage and humidity harvesting, making the integration of humidity de...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2024-12
Main Authors: Ma, Jianxin, Wang, Chen, Liu, Qianqian, Chen, Xinyu, Li, Bo, Su, Zhong‐Min, Lan, Ya‐Qian, Zang, Hong‐Ying
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c124t-5077b77f05ff55c8070044eb77268b35431d25e4e6be2b21209a8d158da950f13
container_end_page
container_issue
container_start_page
container_title Advanced functional materials
container_volume
creator Ma, Jianxin
Wang, Chen
Liu, Qianqian
Chen, Xinyu
Li, Bo
Su, Zhong‐Min
Lan, Ya‐Qian
Zang, Hong‐Ying
description Transforming water vapor into electricity is a critical method for advancing renewable energy supply and alleviating the global energy crisis. However, conventional materials typically struggle to achieve a balance between energy storage and humidity harvesting, making the integration of humidity detection with energy storage technology an emerging challenge. To address this challenge, a novel material design strategy is explored aimed at combining humidity harvesting capabilities with energy storage. Two novel hygroscopic Bi‐based metal‐organic frameworks [Bi 2 (HABTC)(ABTC) 0.5 ·4H 2 O] (MOF 1 ) and [Bi 4 (ABTC) 3 (DMF) 2 ]·DMF (MOF 2 ) are grown in situ on carbon paper electrodes, followed by further modification with polyaniline (PANI). This approach enhances the hygroscopicity of materials, thereby improving electrochemical performance, doubling the energy density compared to traditional coating methods. The integration of humidity‐sensitive polyoxometalates (POMs) electrolytes create a synergistic interaction between the electrode and the electrolyte, enabling effective moisture energy harvesting. At 90% relative humidity (RH) and 70 °C, the constructed solid‐state capacitor demonstrates a high energy density of 40.40 Wh kg −1 at 499.82 W kg −1 . This research not only confirms the feasibility of water vapor energy harvesting but also paves an innovative pathway in the field of humidity energy conversion, highlighting its significant potential for future practical applications.
doi_str_mv 10.1002/adfm.202419752
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202419752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202419752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c124t-5077b77f05ff55c8070044eb77268b35431d25e4e6be2b21209a8d158da950f13</originalsourceid><addsrcrecordid>eNo9kMFOwkAURSdGExHdup4fKL43nemUpTQgJhgWirprXts3iFLazJQYdn6C3-iXCNGwuufexV0cIa4RBgigbqhy9UCB0ji0Rp2IHiaYRDGo9PTI-HouLkJ4B0BrY90Ti9Eq1Nvu7efre0SBK_nAHa33be6XtFmVcuKp5s_GfwTpGi9fqGMvn6ndc0Ztt_UsaVPJ8Yb9cicfu8bTki_FmaN14Kv_7IvFZPyUTaPZ_O4-u51FJSrdRQasLax1YJwzpkzBAmjN-0klaREbHWOlDGtOClaFQgVDSis0aUVDAw7jvhj8_Za-CcGzy1u_qsnvcoT8ICU_SMmPUuJfcrlW1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bismuth‐Based Metal‐Organic Frameworks for Water Vapor Capture and Energy Storage</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Ma, Jianxin ; Wang, Chen ; Liu, Qianqian ; Chen, Xinyu ; Li, Bo ; Su, Zhong‐Min ; Lan, Ya‐Qian ; Zang, Hong‐Ying</creator><creatorcontrib>Ma, Jianxin ; Wang, Chen ; Liu, Qianqian ; Chen, Xinyu ; Li, Bo ; Su, Zhong‐Min ; Lan, Ya‐Qian ; Zang, Hong‐Ying</creatorcontrib><description>Transforming water vapor into electricity is a critical method for advancing renewable energy supply and alleviating the global energy crisis. However, conventional materials typically struggle to achieve a balance between energy storage and humidity harvesting, making the integration of humidity detection with energy storage technology an emerging challenge. To address this challenge, a novel material design strategy is explored aimed at combining humidity harvesting capabilities with energy storage. Two novel hygroscopic Bi‐based metal‐organic frameworks [Bi 2 (HABTC)(ABTC) 0.5 ·4H 2 O] (MOF 1 ) and [Bi 4 (ABTC) 3 (DMF) 2 ]·DMF (MOF 2 ) are grown in situ on carbon paper electrodes, followed by further modification with polyaniline (PANI). This approach enhances the hygroscopicity of materials, thereby improving electrochemical performance, doubling the energy density compared to traditional coating methods. The integration of humidity‐sensitive polyoxometalates (POMs) electrolytes create a synergistic interaction between the electrode and the electrolyte, enabling effective moisture energy harvesting. At 90% relative humidity (RH) and 70 °C, the constructed solid‐state capacitor demonstrates a high energy density of 40.40 Wh kg −1 at 499.82 W kg −1 . This research not only confirms the feasibility of water vapor energy harvesting but also paves an innovative pathway in the field of humidity energy conversion, highlighting its significant potential for future practical applications.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202419752</identifier><language>eng</language><ispartof>Advanced functional materials, 2024-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c124t-5077b77f05ff55c8070044eb77268b35431d25e4e6be2b21209a8d158da950f13</cites><orcidid>0000-0002-3342-1966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ma, Jianxin</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Liu, Qianqian</creatorcontrib><creatorcontrib>Chen, Xinyu</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Su, Zhong‐Min</creatorcontrib><creatorcontrib>Lan, Ya‐Qian</creatorcontrib><creatorcontrib>Zang, Hong‐Ying</creatorcontrib><title>Bismuth‐Based Metal‐Organic Frameworks for Water Vapor Capture and Energy Storage</title><title>Advanced functional materials</title><description>Transforming water vapor into electricity is a critical method for advancing renewable energy supply and alleviating the global energy crisis. However, conventional materials typically struggle to achieve a balance between energy storage and humidity harvesting, making the integration of humidity detection with energy storage technology an emerging challenge. To address this challenge, a novel material design strategy is explored aimed at combining humidity harvesting capabilities with energy storage. Two novel hygroscopic Bi‐based metal‐organic frameworks [Bi 2 (HABTC)(ABTC) 0.5 ·4H 2 O] (MOF 1 ) and [Bi 4 (ABTC) 3 (DMF) 2 ]·DMF (MOF 2 ) are grown in situ on carbon paper electrodes, followed by further modification with polyaniline (PANI). This approach enhances the hygroscopicity of materials, thereby improving electrochemical performance, doubling the energy density compared to traditional coating methods. The integration of humidity‐sensitive polyoxometalates (POMs) electrolytes create a synergistic interaction between the electrode and the electrolyte, enabling effective moisture energy harvesting. At 90% relative humidity (RH) and 70 °C, the constructed solid‐state capacitor demonstrates a high energy density of 40.40 Wh kg −1 at 499.82 W kg −1 . This research not only confirms the feasibility of water vapor energy harvesting but also paves an innovative pathway in the field of humidity energy conversion, highlighting its significant potential for future practical applications.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwkAURSdGExHdup4fKL43nemUpTQgJhgWirprXts3iFLazJQYdn6C3-iXCNGwuufexV0cIa4RBgigbqhy9UCB0ji0Rp2IHiaYRDGo9PTI-HouLkJ4B0BrY90Ti9Eq1Nvu7efre0SBK_nAHa33be6XtFmVcuKp5s_GfwTpGi9fqGMvn6ndc0Ztt_UsaVPJ8Yb9cicfu8bTki_FmaN14Kv_7IvFZPyUTaPZ_O4-u51FJSrdRQasLax1YJwzpkzBAmjN-0klaREbHWOlDGtOClaFQgVDSis0aUVDAw7jvhj8_Za-CcGzy1u_qsnvcoT8ICU_SMmPUuJfcrlW1g</recordid><startdate>20241213</startdate><enddate>20241213</enddate><creator>Ma, Jianxin</creator><creator>Wang, Chen</creator><creator>Liu, Qianqian</creator><creator>Chen, Xinyu</creator><creator>Li, Bo</creator><creator>Su, Zhong‐Min</creator><creator>Lan, Ya‐Qian</creator><creator>Zang, Hong‐Ying</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3342-1966</orcidid></search><sort><creationdate>20241213</creationdate><title>Bismuth‐Based Metal‐Organic Frameworks for Water Vapor Capture and Energy Storage</title><author>Ma, Jianxin ; Wang, Chen ; Liu, Qianqian ; Chen, Xinyu ; Li, Bo ; Su, Zhong‐Min ; Lan, Ya‐Qian ; Zang, Hong‐Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c124t-5077b77f05ff55c8070044eb77268b35431d25e4e6be2b21209a8d158da950f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Jianxin</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Liu, Qianqian</creatorcontrib><creatorcontrib>Chen, Xinyu</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Su, Zhong‐Min</creatorcontrib><creatorcontrib>Lan, Ya‐Qian</creatorcontrib><creatorcontrib>Zang, Hong‐Ying</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Jianxin</au><au>Wang, Chen</au><au>Liu, Qianqian</au><au>Chen, Xinyu</au><au>Li, Bo</au><au>Su, Zhong‐Min</au><au>Lan, Ya‐Qian</au><au>Zang, Hong‐Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bismuth‐Based Metal‐Organic Frameworks for Water Vapor Capture and Energy Storage</atitle><jtitle>Advanced functional materials</jtitle><date>2024-12-13</date><risdate>2024</risdate><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Transforming water vapor into electricity is a critical method for advancing renewable energy supply and alleviating the global energy crisis. However, conventional materials typically struggle to achieve a balance between energy storage and humidity harvesting, making the integration of humidity detection with energy storage technology an emerging challenge. To address this challenge, a novel material design strategy is explored aimed at combining humidity harvesting capabilities with energy storage. Two novel hygroscopic Bi‐based metal‐organic frameworks [Bi 2 (HABTC)(ABTC) 0.5 ·4H 2 O] (MOF 1 ) and [Bi 4 (ABTC) 3 (DMF) 2 ]·DMF (MOF 2 ) are grown in situ on carbon paper electrodes, followed by further modification with polyaniline (PANI). This approach enhances the hygroscopicity of materials, thereby improving electrochemical performance, doubling the energy density compared to traditional coating methods. The integration of humidity‐sensitive polyoxometalates (POMs) electrolytes create a synergistic interaction between the electrode and the electrolyte, enabling effective moisture energy harvesting. At 90% relative humidity (RH) and 70 °C, the constructed solid‐state capacitor demonstrates a high energy density of 40.40 Wh kg −1 at 499.82 W kg −1 . This research not only confirms the feasibility of water vapor energy harvesting but also paves an innovative pathway in the field of humidity energy conversion, highlighting its significant potential for future practical applications.</abstract><doi>10.1002/adfm.202419752</doi><orcidid>https://orcid.org/0000-0002-3342-1966</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-12
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202419752
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
title Bismuth‐Based Metal‐Organic Frameworks for Water Vapor Capture and Energy Storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T09%3A41%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bismuth%E2%80%90Based%20Metal%E2%80%90Organic%20Frameworks%20for%20Water%20Vapor%20Capture%20and%20Energy%20Storage&rft.jtitle=Advanced%20functional%20materials&rft.au=Ma,%20Jianxin&rft.date=2024-12-13&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202419752&rft_dat=%3Ccrossref%3E10_1002_adfm_202419752%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c124t-5077b77f05ff55c8070044eb77268b35431d25e4e6be2b21209a8d158da950f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true