Loading…
Selective Actuation Enabled Multifunctional Magneto‐Mechanical Metamaterial for Programming Elastic Wave Propagation
Active metamaterials are a type of metamaterial with tunable properties enabled by structural reconfigurations. Existing active metamaterials often achieve only a limited number of structural reconfigurations upon the application of an external load across the entire structure. Here, a selective act...
Saved in:
Published in: | Advanced functional materials 2024-12 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c124t-54f16b46239552a76d6725d98f597b7b9c440163da0e3181bdcd304b2bbe47f03 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Advanced functional materials |
container_volume | |
creator | Sim, Jay Wu, Shuai Hwang, Sarah Lu, Lu Zhao, Ruike Renee |
description | Active metamaterials are a type of metamaterial with tunable properties enabled by structural reconfigurations. Existing active metamaterials often achieve only a limited number of structural reconfigurations upon the application of an external load across the entire structure. Here, a selective actuation strategy is proposed for inhomogeneous deformations of magneto‐mechanical metamaterials, which allows for the integration of multiple elastic wave‐tuning functionalities into a single metamaterial design. Central to this actuation strategy is that a magnetic field is applied to specific unit cells instead of the entire metamaterial, and the unit cell can transform between two geometrically distinct shapes, which exhibit very different mechanical responses to elastic wave excitations. The numerical simulations and experiments demonstrate that the tunable response of the unit cell, coupled with inhomogeneous deformation achieved through selective actuation, unlocks multifunctional capabilities of magneto‐mechanical metamaterials such as tunable elastic wave transmittance, elastic waveguide, and vibration isolation. The proposed selective actuation strategy offers a simple but effective way to control the tunable properties and thus enhances the programmability of magneto‐mechanical metamaterials, which also expands the application space of magneto‐mechanical metamaterials in elastic wave manipulation. |
doi_str_mv | 10.1002/adfm.202422325 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202422325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202422325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c124t-54f16b46239552a76d6725d98f597b7b9c440163da0e3181bdcd304b2bbe47f03</originalsourceid><addsrcrecordid>eNo9kMtKA0EURBtRMEa3rvsHJvZrujPLEOIDEhRUdDfcfo0t8wg9PQF3foLf6JeYUcnq1q2CKjgIXVIyo4SwK7C-mTHCBGOc5UdoQiWVGSdsfnzQ9PUUnfX9OyFUKS4maPfoamdS2Dm8MGmAFLoWr1rQtbN4M9Qp-KE1ows13kDVutR9f35tnHmDNpjRdAkaSC6G_eO7iB9iV0VomtBWeFVDn4LBL7Af2AdbqH4nztGJh7p3F_93ip6vV0_L22x9f3O3XKwzQ5lIWS48lVpIxos8Z6CklYrltpj7vFBa6cIIQajkFojjdE61NZYToZnWTihP-BTN_npN7Po-Ol9uY2ggfpSUlCO1cqRWHqjxH2k0Y6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Selective Actuation Enabled Multifunctional Magneto‐Mechanical Metamaterial for Programming Elastic Wave Propagation</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Sim, Jay ; Wu, Shuai ; Hwang, Sarah ; Lu, Lu ; Zhao, Ruike Renee</creator><creatorcontrib>Sim, Jay ; Wu, Shuai ; Hwang, Sarah ; Lu, Lu ; Zhao, Ruike Renee</creatorcontrib><description>Active metamaterials are a type of metamaterial with tunable properties enabled by structural reconfigurations. Existing active metamaterials often achieve only a limited number of structural reconfigurations upon the application of an external load across the entire structure. Here, a selective actuation strategy is proposed for inhomogeneous deformations of magneto‐mechanical metamaterials, which allows for the integration of multiple elastic wave‐tuning functionalities into a single metamaterial design. Central to this actuation strategy is that a magnetic field is applied to specific unit cells instead of the entire metamaterial, and the unit cell can transform between two geometrically distinct shapes, which exhibit very different mechanical responses to elastic wave excitations. The numerical simulations and experiments demonstrate that the tunable response of the unit cell, coupled with inhomogeneous deformation achieved through selective actuation, unlocks multifunctional capabilities of magneto‐mechanical metamaterials such as tunable elastic wave transmittance, elastic waveguide, and vibration isolation. The proposed selective actuation strategy offers a simple but effective way to control the tunable properties and thus enhances the programmability of magneto‐mechanical metamaterials, which also expands the application space of magneto‐mechanical metamaterials in elastic wave manipulation.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202422325</identifier><language>eng</language><ispartof>Advanced functional materials, 2024-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c124t-54f16b46239552a76d6725d98f597b7b9c440163da0e3181bdcd304b2bbe47f03</cites><orcidid>0000-0002-9292-5267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sim, Jay</creatorcontrib><creatorcontrib>Wu, Shuai</creatorcontrib><creatorcontrib>Hwang, Sarah</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Zhao, Ruike Renee</creatorcontrib><title>Selective Actuation Enabled Multifunctional Magneto‐Mechanical Metamaterial for Programming Elastic Wave Propagation</title><title>Advanced functional materials</title><description>Active metamaterials are a type of metamaterial with tunable properties enabled by structural reconfigurations. Existing active metamaterials often achieve only a limited number of structural reconfigurations upon the application of an external load across the entire structure. Here, a selective actuation strategy is proposed for inhomogeneous deformations of magneto‐mechanical metamaterials, which allows for the integration of multiple elastic wave‐tuning functionalities into a single metamaterial design. Central to this actuation strategy is that a magnetic field is applied to specific unit cells instead of the entire metamaterial, and the unit cell can transform between two geometrically distinct shapes, which exhibit very different mechanical responses to elastic wave excitations. The numerical simulations and experiments demonstrate that the tunable response of the unit cell, coupled with inhomogeneous deformation achieved through selective actuation, unlocks multifunctional capabilities of magneto‐mechanical metamaterials such as tunable elastic wave transmittance, elastic waveguide, and vibration isolation. The proposed selective actuation strategy offers a simple but effective way to control the tunable properties and thus enhances the programmability of magneto‐mechanical metamaterials, which also expands the application space of magneto‐mechanical metamaterials in elastic wave manipulation.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKA0EURBtRMEa3rvsHJvZrujPLEOIDEhRUdDfcfo0t8wg9PQF3foLf6JeYUcnq1q2CKjgIXVIyo4SwK7C-mTHCBGOc5UdoQiWVGSdsfnzQ9PUUnfX9OyFUKS4maPfoamdS2Dm8MGmAFLoWr1rQtbN4M9Qp-KE1ows13kDVutR9f35tnHmDNpjRdAkaSC6G_eO7iB9iV0VomtBWeFVDn4LBL7Af2AdbqH4nztGJh7p3F_93ip6vV0_L22x9f3O3XKwzQ5lIWS48lVpIxos8Z6CklYrltpj7vFBa6cIIQajkFojjdE61NZYToZnWTihP-BTN_npN7Po-Ol9uY2ggfpSUlCO1cqRWHqjxH2k0Y6o</recordid><startdate>20241213</startdate><enddate>20241213</enddate><creator>Sim, Jay</creator><creator>Wu, Shuai</creator><creator>Hwang, Sarah</creator><creator>Lu, Lu</creator><creator>Zhao, Ruike Renee</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9292-5267</orcidid></search><sort><creationdate>20241213</creationdate><title>Selective Actuation Enabled Multifunctional Magneto‐Mechanical Metamaterial for Programming Elastic Wave Propagation</title><author>Sim, Jay ; Wu, Shuai ; Hwang, Sarah ; Lu, Lu ; Zhao, Ruike Renee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c124t-54f16b46239552a76d6725d98f597b7b9c440163da0e3181bdcd304b2bbe47f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sim, Jay</creatorcontrib><creatorcontrib>Wu, Shuai</creatorcontrib><creatorcontrib>Hwang, Sarah</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Zhao, Ruike Renee</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sim, Jay</au><au>Wu, Shuai</au><au>Hwang, Sarah</au><au>Lu, Lu</au><au>Zhao, Ruike Renee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Actuation Enabled Multifunctional Magneto‐Mechanical Metamaterial for Programming Elastic Wave Propagation</atitle><jtitle>Advanced functional materials</jtitle><date>2024-12-13</date><risdate>2024</risdate><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Active metamaterials are a type of metamaterial with tunable properties enabled by structural reconfigurations. Existing active metamaterials often achieve only a limited number of structural reconfigurations upon the application of an external load across the entire structure. Here, a selective actuation strategy is proposed for inhomogeneous deformations of magneto‐mechanical metamaterials, which allows for the integration of multiple elastic wave‐tuning functionalities into a single metamaterial design. Central to this actuation strategy is that a magnetic field is applied to specific unit cells instead of the entire metamaterial, and the unit cell can transform between two geometrically distinct shapes, which exhibit very different mechanical responses to elastic wave excitations. The numerical simulations and experiments demonstrate that the tunable response of the unit cell, coupled with inhomogeneous deformation achieved through selective actuation, unlocks multifunctional capabilities of magneto‐mechanical metamaterials such as tunable elastic wave transmittance, elastic waveguide, and vibration isolation. The proposed selective actuation strategy offers a simple but effective way to control the tunable properties and thus enhances the programmability of magneto‐mechanical metamaterials, which also expands the application space of magneto‐mechanical metamaterials in elastic wave manipulation.</abstract><doi>10.1002/adfm.202422325</doi><orcidid>https://orcid.org/0000-0002-9292-5267</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-12 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adfm_202422325 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
title | Selective Actuation Enabled Multifunctional Magneto‐Mechanical Metamaterial for Programming Elastic Wave Propagation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Actuation%20Enabled%20Multifunctional%20Magneto%E2%80%90Mechanical%20Metamaterial%20for%20Programming%20Elastic%20Wave%20Propagation&rft.jtitle=Advanced%20functional%20materials&rft.au=Sim,%20Jay&rft.date=2024-12-13&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202422325&rft_dat=%3Ccrossref%3E10_1002_adfm_202422325%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c124t-54f16b46239552a76d6725d98f597b7b9c440163da0e3181bdcd304b2bbe47f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |