Loading…

Selective Actuation Enabled Multifunctional Magneto‐Mechanical Metamaterial for Programming Elastic Wave Propagation

Active metamaterials are a type of metamaterial with tunable properties enabled by structural reconfigurations. Existing active metamaterials often achieve only a limited number of structural reconfigurations upon the application of an external load across the entire structure. Here, a selective act...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2024-12
Main Authors: Sim, Jay, Wu, Shuai, Hwang, Sarah, Lu, Lu, Zhao, Ruike Renee
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c124t-54f16b46239552a76d6725d98f597b7b9c440163da0e3181bdcd304b2bbe47f03
container_end_page
container_issue
container_start_page
container_title Advanced functional materials
container_volume
creator Sim, Jay
Wu, Shuai
Hwang, Sarah
Lu, Lu
Zhao, Ruike Renee
description Active metamaterials are a type of metamaterial with tunable properties enabled by structural reconfigurations. Existing active metamaterials often achieve only a limited number of structural reconfigurations upon the application of an external load across the entire structure. Here, a selective actuation strategy is proposed for inhomogeneous deformations of magneto‐mechanical metamaterials, which allows for the integration of multiple elastic wave‐tuning functionalities into a single metamaterial design. Central to this actuation strategy is that a magnetic field is applied to specific unit cells instead of the entire metamaterial, and the unit cell can transform between two geometrically distinct shapes, which exhibit very different mechanical responses to elastic wave excitations. The numerical simulations and experiments demonstrate that the tunable response of the unit cell, coupled with inhomogeneous deformation achieved through selective actuation, unlocks multifunctional capabilities of magneto‐mechanical metamaterials such as tunable elastic wave transmittance, elastic waveguide, and vibration isolation. The proposed selective actuation strategy offers a simple but effective way to control the tunable properties and thus enhances the programmability of magneto‐mechanical metamaterials, which also expands the application space of magneto‐mechanical metamaterials in elastic wave manipulation.
doi_str_mv 10.1002/adfm.202422325
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202422325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202422325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c124t-54f16b46239552a76d6725d98f597b7b9c440163da0e3181bdcd304b2bbe47f03</originalsourceid><addsrcrecordid>eNo9kMtKA0EURBtRMEa3rvsHJvZrujPLEOIDEhRUdDfcfo0t8wg9PQF3foLf6JeYUcnq1q2CKjgIXVIyo4SwK7C-mTHCBGOc5UdoQiWVGSdsfnzQ9PUUnfX9OyFUKS4maPfoamdS2Dm8MGmAFLoWr1rQtbN4M9Qp-KE1ows13kDVutR9f35tnHmDNpjRdAkaSC6G_eO7iB9iV0VomtBWeFVDn4LBL7Af2AdbqH4nztGJh7p3F_93ip6vV0_L22x9f3O3XKwzQ5lIWS48lVpIxos8Z6CklYrltpj7vFBa6cIIQajkFojjdE61NZYToZnWTihP-BTN_npN7Po-Ol9uY2ggfpSUlCO1cqRWHqjxH2k0Y6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Selective Actuation Enabled Multifunctional Magneto‐Mechanical Metamaterial for Programming Elastic Wave Propagation</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Sim, Jay ; Wu, Shuai ; Hwang, Sarah ; Lu, Lu ; Zhao, Ruike Renee</creator><creatorcontrib>Sim, Jay ; Wu, Shuai ; Hwang, Sarah ; Lu, Lu ; Zhao, Ruike Renee</creatorcontrib><description>Active metamaterials are a type of metamaterial with tunable properties enabled by structural reconfigurations. Existing active metamaterials often achieve only a limited number of structural reconfigurations upon the application of an external load across the entire structure. Here, a selective actuation strategy is proposed for inhomogeneous deformations of magneto‐mechanical metamaterials, which allows for the integration of multiple elastic wave‐tuning functionalities into a single metamaterial design. Central to this actuation strategy is that a magnetic field is applied to specific unit cells instead of the entire metamaterial, and the unit cell can transform between two geometrically distinct shapes, which exhibit very different mechanical responses to elastic wave excitations. The numerical simulations and experiments demonstrate that the tunable response of the unit cell, coupled with inhomogeneous deformation achieved through selective actuation, unlocks multifunctional capabilities of magneto‐mechanical metamaterials such as tunable elastic wave transmittance, elastic waveguide, and vibration isolation. The proposed selective actuation strategy offers a simple but effective way to control the tunable properties and thus enhances the programmability of magneto‐mechanical metamaterials, which also expands the application space of magneto‐mechanical metamaterials in elastic wave manipulation.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202422325</identifier><language>eng</language><ispartof>Advanced functional materials, 2024-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c124t-54f16b46239552a76d6725d98f597b7b9c440163da0e3181bdcd304b2bbe47f03</cites><orcidid>0000-0002-9292-5267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sim, Jay</creatorcontrib><creatorcontrib>Wu, Shuai</creatorcontrib><creatorcontrib>Hwang, Sarah</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Zhao, Ruike Renee</creatorcontrib><title>Selective Actuation Enabled Multifunctional Magneto‐Mechanical Metamaterial for Programming Elastic Wave Propagation</title><title>Advanced functional materials</title><description>Active metamaterials are a type of metamaterial with tunable properties enabled by structural reconfigurations. Existing active metamaterials often achieve only a limited number of structural reconfigurations upon the application of an external load across the entire structure. Here, a selective actuation strategy is proposed for inhomogeneous deformations of magneto‐mechanical metamaterials, which allows for the integration of multiple elastic wave‐tuning functionalities into a single metamaterial design. Central to this actuation strategy is that a magnetic field is applied to specific unit cells instead of the entire metamaterial, and the unit cell can transform between two geometrically distinct shapes, which exhibit very different mechanical responses to elastic wave excitations. The numerical simulations and experiments demonstrate that the tunable response of the unit cell, coupled with inhomogeneous deformation achieved through selective actuation, unlocks multifunctional capabilities of magneto‐mechanical metamaterials such as tunable elastic wave transmittance, elastic waveguide, and vibration isolation. The proposed selective actuation strategy offers a simple but effective way to control the tunable properties and thus enhances the programmability of magneto‐mechanical metamaterials, which also expands the application space of magneto‐mechanical metamaterials in elastic wave manipulation.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKA0EURBtRMEa3rvsHJvZrujPLEOIDEhRUdDfcfo0t8wg9PQF3foLf6JeYUcnq1q2CKjgIXVIyo4SwK7C-mTHCBGOc5UdoQiWVGSdsfnzQ9PUUnfX9OyFUKS4maPfoamdS2Dm8MGmAFLoWr1rQtbN4M9Qp-KE1ows13kDVutR9f35tnHmDNpjRdAkaSC6G_eO7iB9iV0VomtBWeFVDn4LBL7Af2AdbqH4nztGJh7p3F_93ip6vV0_L22x9f3O3XKwzQ5lIWS48lVpIxos8Z6CklYrltpj7vFBa6cIIQajkFojjdE61NZYToZnWTihP-BTN_npN7Po-Ol9uY2ggfpSUlCO1cqRWHqjxH2k0Y6o</recordid><startdate>20241213</startdate><enddate>20241213</enddate><creator>Sim, Jay</creator><creator>Wu, Shuai</creator><creator>Hwang, Sarah</creator><creator>Lu, Lu</creator><creator>Zhao, Ruike Renee</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9292-5267</orcidid></search><sort><creationdate>20241213</creationdate><title>Selective Actuation Enabled Multifunctional Magneto‐Mechanical Metamaterial for Programming Elastic Wave Propagation</title><author>Sim, Jay ; Wu, Shuai ; Hwang, Sarah ; Lu, Lu ; Zhao, Ruike Renee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c124t-54f16b46239552a76d6725d98f597b7b9c440163da0e3181bdcd304b2bbe47f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sim, Jay</creatorcontrib><creatorcontrib>Wu, Shuai</creatorcontrib><creatorcontrib>Hwang, Sarah</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Zhao, Ruike Renee</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sim, Jay</au><au>Wu, Shuai</au><au>Hwang, Sarah</au><au>Lu, Lu</au><au>Zhao, Ruike Renee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Actuation Enabled Multifunctional Magneto‐Mechanical Metamaterial for Programming Elastic Wave Propagation</atitle><jtitle>Advanced functional materials</jtitle><date>2024-12-13</date><risdate>2024</risdate><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Active metamaterials are a type of metamaterial with tunable properties enabled by structural reconfigurations. Existing active metamaterials often achieve only a limited number of structural reconfigurations upon the application of an external load across the entire structure. Here, a selective actuation strategy is proposed for inhomogeneous deformations of magneto‐mechanical metamaterials, which allows for the integration of multiple elastic wave‐tuning functionalities into a single metamaterial design. Central to this actuation strategy is that a magnetic field is applied to specific unit cells instead of the entire metamaterial, and the unit cell can transform between two geometrically distinct shapes, which exhibit very different mechanical responses to elastic wave excitations. The numerical simulations and experiments demonstrate that the tunable response of the unit cell, coupled with inhomogeneous deformation achieved through selective actuation, unlocks multifunctional capabilities of magneto‐mechanical metamaterials such as tunable elastic wave transmittance, elastic waveguide, and vibration isolation. The proposed selective actuation strategy offers a simple but effective way to control the tunable properties and thus enhances the programmability of magneto‐mechanical metamaterials, which also expands the application space of magneto‐mechanical metamaterials in elastic wave manipulation.</abstract><doi>10.1002/adfm.202422325</doi><orcidid>https://orcid.org/0000-0002-9292-5267</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-12
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202422325
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
title Selective Actuation Enabled Multifunctional Magneto‐Mechanical Metamaterial for Programming Elastic Wave Propagation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Actuation%20Enabled%20Multifunctional%20Magneto%E2%80%90Mechanical%20Metamaterial%20for%20Programming%20Elastic%20Wave%20Propagation&rft.jtitle=Advanced%20functional%20materials&rft.au=Sim,%20Jay&rft.date=2024-12-13&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202422325&rft_dat=%3Ccrossref%3E10_1002_adfm_202422325%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c124t-54f16b46239552a76d6725d98f597b7b9c440163da0e3181bdcd304b2bbe47f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true