Loading…

Laser-Induced Transient Self-Organization of TiN x Nano-Filament Percolated Networks for High Performance Surface-Mountable Filter Capacitors

Filter capacitors (FCs) are substantial for digital circuits and microelectronic devices, and thus more compact FCs are eternally demanded for system miniaturization. Even though microsupercapacitors are broadly regarded as an excellent candidate for future FCs, yet due to the limitation of availabl...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2023-04, Vol.35 (15), p.e2210038
Main Authors: Wang, Fangcheng, Guo, Zhenbin, Wang, Zhiyuan, Zhu, Haojie, Zhao, Guangyao, Chen, Chaojie, Liu, Mingjie, Sun, Rong, Kang, Feiyu, Wong, Ching-Ping, Yang, Cheng
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1478-4ce7214beb016959317213ec3892e0753019b5bed8767c6186b6d875d5e84d93
cites cdi_FETCH-LOGICAL-c1478-4ce7214beb016959317213ec3892e0753019b5bed8767c6186b6d875d5e84d93
container_end_page
container_issue 15
container_start_page e2210038
container_title Advanced materials (Weinheim)
container_volume 35
creator Wang, Fangcheng
Guo, Zhenbin
Wang, Zhiyuan
Zhu, Haojie
Zhao, Guangyao
Chen, Chaojie
Liu, Mingjie
Sun, Rong
Kang, Feiyu
Wong, Ching-Ping
Yang, Cheng
description Filter capacitors (FCs) are substantial for digital circuits and microelectronic devices, and thus more compact FCs are eternally demanded for system miniaturization. Even though microsupercapacitors are broadly regarded as an excellent candidate for future FCs, yet due to the limitation of available electrode materials, the capacitive performance of reported MSCs drops sharply under high-frequency alternating current. Herein, we present a unique laser-induced transient self-organization strategy, which synergizes pulsed laser energy and multi-physical field controlled coalescence processes, leading to the rapid and controllable preparation of titanium nitride ultrafine nano-filaments (diameter ≈3-5 nm) networks. Their chaotic fractal nanoporous structure, superior specific surface area, and excellent conductivity render these nanostructures promising candidates for FCs. Surface-mounted filter capacitors based on this electrode material exhibit ultra-long cycle-life (2 000 000 cycles) with record ultrahigh volumetric energy density of 9.17 mWh cm at 120 Hz in aqueous electrolyte, displaying advantages in function, size, and integrability compared with the state-of-the-art aluminum electrolytic capacitors. The method here provides a versatile toolbox for designing novel nanostructures with intriguing characteristics and insights for developing advanced and miniaturized filter and power devices.
doi_str_mv 10.1002/adma.202210038
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adma_202210038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36688671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1478-4ce7214beb016959317213ec3892e0753019b5bed8767c6186b6d875d5e84d93</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EoqVw5Yj8Ai52nDj2EVWUViotUnOPHGdTDElc2an4eQfemUSFnnZGOzOHD6FbRqeM0uhel42eRjSKesflGRqzJGIkpio5R2OqeEKUiOUIXYXwRilVgopLNOJCSClSNkY_Kx3Ak2VbHgyUOPO6DRbaDm-hrsjG73Rrv3VnXYtdhTO7xp94rVtH5rbWzRB8AW9crbu-vYbuw_n3gCvn8cLuXodnrxvdGsDbg6-0AfLsDm2nixpwv9GBxzO918Z2zodrdFHpOsDN352gbP6YzRZktXlazh5WxLA4lSQ2kEYsLqCgTKhEcdZbDoZLFQFNE06ZKpICSpmK1AgmRSF6nZQJyLhUfIKmx1njXQgeqnzvbaP9V85oPmDNB6z5CWtfuDsW9oeigfIU_-fIfwFT73Sx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Laser-Induced Transient Self-Organization of TiN x Nano-Filament Percolated Networks for High Performance Surface-Mountable Filter Capacitors</title><source>Wiley</source><creator>Wang, Fangcheng ; Guo, Zhenbin ; Wang, Zhiyuan ; Zhu, Haojie ; Zhao, Guangyao ; Chen, Chaojie ; Liu, Mingjie ; Sun, Rong ; Kang, Feiyu ; Wong, Ching-Ping ; Yang, Cheng</creator><creatorcontrib>Wang, Fangcheng ; Guo, Zhenbin ; Wang, Zhiyuan ; Zhu, Haojie ; Zhao, Guangyao ; Chen, Chaojie ; Liu, Mingjie ; Sun, Rong ; Kang, Feiyu ; Wong, Ching-Ping ; Yang, Cheng</creatorcontrib><description>Filter capacitors (FCs) are substantial for digital circuits and microelectronic devices, and thus more compact FCs are eternally demanded for system miniaturization. Even though microsupercapacitors are broadly regarded as an excellent candidate for future FCs, yet due to the limitation of available electrode materials, the capacitive performance of reported MSCs drops sharply under high-frequency alternating current. Herein, we present a unique laser-induced transient self-organization strategy, which synergizes pulsed laser energy and multi-physical field controlled coalescence processes, leading to the rapid and controllable preparation of titanium nitride ultrafine nano-filaments (diameter ≈3-5 nm) networks. Their chaotic fractal nanoporous structure, superior specific surface area, and excellent conductivity render these nanostructures promising candidates for FCs. Surface-mounted filter capacitors based on this electrode material exhibit ultra-long cycle-life (2 000 000 cycles) with record ultrahigh volumetric energy density of 9.17 mWh cm at 120 Hz in aqueous electrolyte, displaying advantages in function, size, and integrability compared with the state-of-the-art aluminum electrolytic capacitors. The method here provides a versatile toolbox for designing novel nanostructures with intriguing characteristics and insights for developing advanced and miniaturized filter and power devices.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202210038</identifier><identifier>PMID: 36688671</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced materials (Weinheim), 2023-04, Vol.35 (15), p.e2210038</ispartof><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1478-4ce7214beb016959317213ec3892e0753019b5bed8767c6186b6d875d5e84d93</citedby><cites>FETCH-LOGICAL-c1478-4ce7214beb016959317213ec3892e0753019b5bed8767c6186b6d875d5e84d93</cites><orcidid>0000-0003-2618-4787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36688671$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Fangcheng</creatorcontrib><creatorcontrib>Guo, Zhenbin</creatorcontrib><creatorcontrib>Wang, Zhiyuan</creatorcontrib><creatorcontrib>Zhu, Haojie</creatorcontrib><creatorcontrib>Zhao, Guangyao</creatorcontrib><creatorcontrib>Chen, Chaojie</creatorcontrib><creatorcontrib>Liu, Mingjie</creatorcontrib><creatorcontrib>Sun, Rong</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><creatorcontrib>Wong, Ching-Ping</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><title>Laser-Induced Transient Self-Organization of TiN x Nano-Filament Percolated Networks for High Performance Surface-Mountable Filter Capacitors</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Filter capacitors (FCs) are substantial for digital circuits and microelectronic devices, and thus more compact FCs are eternally demanded for system miniaturization. Even though microsupercapacitors are broadly regarded as an excellent candidate for future FCs, yet due to the limitation of available electrode materials, the capacitive performance of reported MSCs drops sharply under high-frequency alternating current. Herein, we present a unique laser-induced transient self-organization strategy, which synergizes pulsed laser energy and multi-physical field controlled coalescence processes, leading to the rapid and controllable preparation of titanium nitride ultrafine nano-filaments (diameter ≈3-5 nm) networks. Their chaotic fractal nanoporous structure, superior specific surface area, and excellent conductivity render these nanostructures promising candidates for FCs. Surface-mounted filter capacitors based on this electrode material exhibit ultra-long cycle-life (2 000 000 cycles) with record ultrahigh volumetric energy density of 9.17 mWh cm at 120 Hz in aqueous electrolyte, displaying advantages in function, size, and integrability compared with the state-of-the-art aluminum electrolytic capacitors. The method here provides a versatile toolbox for designing novel nanostructures with intriguing characteristics and insights for developing advanced and miniaturized filter and power devices.</description><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EoqVw5Yj8Ai52nDj2EVWUViotUnOPHGdTDElc2an4eQfemUSFnnZGOzOHD6FbRqeM0uhel42eRjSKesflGRqzJGIkpio5R2OqeEKUiOUIXYXwRilVgopLNOJCSClSNkY_Kx3Ak2VbHgyUOPO6DRbaDm-hrsjG73Rrv3VnXYtdhTO7xp94rVtH5rbWzRB8AW9crbu-vYbuw_n3gCvn8cLuXodnrxvdGsDbg6-0AfLsDm2nixpwv9GBxzO918Z2zodrdFHpOsDN352gbP6YzRZktXlazh5WxLA4lSQ2kEYsLqCgTKhEcdZbDoZLFQFNE06ZKpICSpmK1AgmRSF6nZQJyLhUfIKmx1njXQgeqnzvbaP9V85oPmDNB6z5CWtfuDsW9oeigfIU_-fIfwFT73Sx</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Wang, Fangcheng</creator><creator>Guo, Zhenbin</creator><creator>Wang, Zhiyuan</creator><creator>Zhu, Haojie</creator><creator>Zhao, Guangyao</creator><creator>Chen, Chaojie</creator><creator>Liu, Mingjie</creator><creator>Sun, Rong</creator><creator>Kang, Feiyu</creator><creator>Wong, Ching-Ping</creator><creator>Yang, Cheng</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2618-4787</orcidid></search><sort><creationdate>202304</creationdate><title>Laser-Induced Transient Self-Organization of TiN x Nano-Filament Percolated Networks for High Performance Surface-Mountable Filter Capacitors</title><author>Wang, Fangcheng ; Guo, Zhenbin ; Wang, Zhiyuan ; Zhu, Haojie ; Zhao, Guangyao ; Chen, Chaojie ; Liu, Mingjie ; Sun, Rong ; Kang, Feiyu ; Wong, Ching-Ping ; Yang, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1478-4ce7214beb016959317213ec3892e0753019b5bed8767c6186b6d875d5e84d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fangcheng</creatorcontrib><creatorcontrib>Guo, Zhenbin</creatorcontrib><creatorcontrib>Wang, Zhiyuan</creatorcontrib><creatorcontrib>Zhu, Haojie</creatorcontrib><creatorcontrib>Zhao, Guangyao</creatorcontrib><creatorcontrib>Chen, Chaojie</creatorcontrib><creatorcontrib>Liu, Mingjie</creatorcontrib><creatorcontrib>Sun, Rong</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><creatorcontrib>Wong, Ching-Ping</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fangcheng</au><au>Guo, Zhenbin</au><au>Wang, Zhiyuan</au><au>Zhu, Haojie</au><au>Zhao, Guangyao</au><au>Chen, Chaojie</au><au>Liu, Mingjie</au><au>Sun, Rong</au><au>Kang, Feiyu</au><au>Wong, Ching-Ping</au><au>Yang, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser-Induced Transient Self-Organization of TiN x Nano-Filament Percolated Networks for High Performance Surface-Mountable Filter Capacitors</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-04</date><risdate>2023</risdate><volume>35</volume><issue>15</issue><spage>e2210038</spage><pages>e2210038-</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Filter capacitors (FCs) are substantial for digital circuits and microelectronic devices, and thus more compact FCs are eternally demanded for system miniaturization. Even though microsupercapacitors are broadly regarded as an excellent candidate for future FCs, yet due to the limitation of available electrode materials, the capacitive performance of reported MSCs drops sharply under high-frequency alternating current. Herein, we present a unique laser-induced transient self-organization strategy, which synergizes pulsed laser energy and multi-physical field controlled coalescence processes, leading to the rapid and controllable preparation of titanium nitride ultrafine nano-filaments (diameter ≈3-5 nm) networks. Their chaotic fractal nanoporous structure, superior specific surface area, and excellent conductivity render these nanostructures promising candidates for FCs. Surface-mounted filter capacitors based on this electrode material exhibit ultra-long cycle-life (2 000 000 cycles) with record ultrahigh volumetric energy density of 9.17 mWh cm at 120 Hz in aqueous electrolyte, displaying advantages in function, size, and integrability compared with the state-of-the-art aluminum electrolytic capacitors. The method here provides a versatile toolbox for designing novel nanostructures with intriguing characteristics and insights for developing advanced and miniaturized filter and power devices.</abstract><cop>Germany</cop><pmid>36688671</pmid><doi>10.1002/adma.202210038</doi><orcidid>https://orcid.org/0000-0003-2618-4787</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-04, Vol.35 (15), p.e2210038
issn 0935-9648
1521-4095
language eng
recordid cdi_crossref_primary_10_1002_adma_202210038
source Wiley
title Laser-Induced Transient Self-Organization of TiN x Nano-Filament Percolated Networks for High Performance Surface-Mountable Filter Capacitors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A20%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser-Induced%20Transient%20Self-Organization%20of%20TiN%20x%20Nano-Filament%20Percolated%20Networks%20for%20High%20Performance%20Surface-Mountable%20Filter%20Capacitors&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Fangcheng&rft.date=2023-04&rft.volume=35&rft.issue=15&rft.spage=e2210038&rft.pages=e2210038-&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202210038&rft_dat=%3Cpubmed_cross%3E36688671%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1478-4ce7214beb016959317213ec3892e0753019b5bed8767c6186b6d875d5e84d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/36688671&rfr_iscdi=true