Loading…

Stabilization of Lattice Oxygen Evolution Reactions in Oxophilic Ce-Mediated Bi/BiCeO 1.8 H Electrocatalysts for Efficient Anion Exchange Membrane Water Electrolyzers

The lattice oxygen mechanism (LOM) offers an efficient reaction pathway for oxygen evolution reactions (OERs) in energy storage and conversion systems. Owing to the involvement of active lattice oxygen enhancing electrochemical activity, addressing the structural and electrochemical stabilities of L...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2024-07, Vol.36 (27), p.e2314211
Main Authors: Jo, Seunghwan, Jeon, Jeong In, Shin, Ki Hoon, Zhang, Liting, Lee, Keon Beom, Hong, John, Sohn, Jung Inn
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c626-cb35fc521465d6692fc6538f34b10a3455262b4ab883abce32c34a7109cce79c3
container_end_page
container_issue 27
container_start_page e2314211
container_title Advanced materials (Weinheim)
container_volume 36
creator Jo, Seunghwan
Jeon, Jeong In
Shin, Ki Hoon
Zhang, Liting
Lee, Keon Beom
Hong, John
Sohn, Jung Inn
description The lattice oxygen mechanism (LOM) offers an efficient reaction pathway for oxygen evolution reactions (OERs) in energy storage and conversion systems. Owing to the involvement of active lattice oxygen enhancing electrochemical activity, addressing the structural and electrochemical stabilities of LOM materials is crucial. Herein, a heterostructure (Bi/BiCeO H) containing abundant under-coordinated oxygen atoms having oxygen nonbonding states is synthesized by a simple electrochemical deposition method. Given the difference in reduction potentials between Bi and Ce, partially reduced Bi nanoparticles and surrounding under-coordinated oxygen atoms are generated in BiCeO H. It is found that the lattice oxygen can be activated as a reactant of the OER when the valence state of Bi increases to Bi , leading to increased metal-oxygen covalency and that the oxophilic Ce / redox couple can maintain the Bi nanoparticles and surrounding under-coordinated oxygen atoms by preventing over-oxidation of Bi. The anion exchange membrane water electrolyzer with Bi/BiCeO H exhibits a low cell voltage of 1.79 V even at a high practical current density of 1.0 A cm . Furthermore, the cell performance remains significantly stable over 100 h with only a 2.2% increase in the initial cell voltage, demonstrating sustainable lattice oxygen redox.
doi_str_mv 10.1002/adma.202314211
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adma_202314211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38558476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626-cb35fc521465d6692fc6538f34b10a3455262b4ab883abce32c34a7109cce79c3</originalsourceid><addsrcrecordid>eNo9kM1O20AUhUcVqATabZfVvIDD_MdeQmQKUlAkQOrSur6-A1M5djQzIMID9Tlx-FvdK53zncXH2C8p5lIIdQrdBuZKKC2NkvIbm0mrZGFEZQ_YTFTaFpUz5RE7TumfEKJywn1nR7q0tjQLN2P_bzO0oQ8vkMM48NHzFeQckPj6eXdPA6-fxv7xLbshwP2TeBimdNw-TBzyJRXX1AXI1PHzcHoelrTmcl7yS173hDmOCBn6XcqJ-zHy2vuAgYbMz4b9bP2MDzDcE7-mTRthIP532oqfcL97oZh-sEMPfaKfH_eE3V3Ud8vLYrX-c7U8WxXolCuw1dbjJMA42zlXKY_O6tJr00oB2lirnGoNtGWpoUXSCrWBhRQVIi0q1Cds_j6LcUwpkm-2MWwg7hopmr3vZu-7-fI9Ab_fge1ju6Huq_4pWL8CisV96w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stabilization of Lattice Oxygen Evolution Reactions in Oxophilic Ce-Mediated Bi/BiCeO 1.8 H Electrocatalysts for Efficient Anion Exchange Membrane Water Electrolyzers</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Jo, Seunghwan ; Jeon, Jeong In ; Shin, Ki Hoon ; Zhang, Liting ; Lee, Keon Beom ; Hong, John ; Sohn, Jung Inn</creator><creatorcontrib>Jo, Seunghwan ; Jeon, Jeong In ; Shin, Ki Hoon ; Zhang, Liting ; Lee, Keon Beom ; Hong, John ; Sohn, Jung Inn</creatorcontrib><description>The lattice oxygen mechanism (LOM) offers an efficient reaction pathway for oxygen evolution reactions (OERs) in energy storage and conversion systems. Owing to the involvement of active lattice oxygen enhancing electrochemical activity, addressing the structural and electrochemical stabilities of LOM materials is crucial. Herein, a heterostructure (Bi/BiCeO H) containing abundant under-coordinated oxygen atoms having oxygen nonbonding states is synthesized by a simple electrochemical deposition method. Given the difference in reduction potentials between Bi and Ce, partially reduced Bi nanoparticles and surrounding under-coordinated oxygen atoms are generated in BiCeO H. It is found that the lattice oxygen can be activated as a reactant of the OER when the valence state of Bi increases to Bi , leading to increased metal-oxygen covalency and that the oxophilic Ce / redox couple can maintain the Bi nanoparticles and surrounding under-coordinated oxygen atoms by preventing over-oxidation of Bi. The anion exchange membrane water electrolyzer with Bi/BiCeO H exhibits a low cell voltage of 1.79 V even at a high practical current density of 1.0 A cm . Furthermore, the cell performance remains significantly stable over 100 h with only a 2.2% increase in the initial cell voltage, demonstrating sustainable lattice oxygen redox.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202314211</identifier><identifier>PMID: 38558476</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced materials (Weinheim), 2024-07, Vol.36 (27), p.e2314211</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c626-cb35fc521465d6692fc6538f34b10a3455262b4ab883abce32c34a7109cce79c3</cites><orcidid>0000-0002-3155-4327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38558476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jo, Seunghwan</creatorcontrib><creatorcontrib>Jeon, Jeong In</creatorcontrib><creatorcontrib>Shin, Ki Hoon</creatorcontrib><creatorcontrib>Zhang, Liting</creatorcontrib><creatorcontrib>Lee, Keon Beom</creatorcontrib><creatorcontrib>Hong, John</creatorcontrib><creatorcontrib>Sohn, Jung Inn</creatorcontrib><title>Stabilization of Lattice Oxygen Evolution Reactions in Oxophilic Ce-Mediated Bi/BiCeO 1.8 H Electrocatalysts for Efficient Anion Exchange Membrane Water Electrolyzers</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The lattice oxygen mechanism (LOM) offers an efficient reaction pathway for oxygen evolution reactions (OERs) in energy storage and conversion systems. Owing to the involvement of active lattice oxygen enhancing electrochemical activity, addressing the structural and electrochemical stabilities of LOM materials is crucial. Herein, a heterostructure (Bi/BiCeO H) containing abundant under-coordinated oxygen atoms having oxygen nonbonding states is synthesized by a simple electrochemical deposition method. Given the difference in reduction potentials between Bi and Ce, partially reduced Bi nanoparticles and surrounding under-coordinated oxygen atoms are generated in BiCeO H. It is found that the lattice oxygen can be activated as a reactant of the OER when the valence state of Bi increases to Bi , leading to increased metal-oxygen covalency and that the oxophilic Ce / redox couple can maintain the Bi nanoparticles and surrounding under-coordinated oxygen atoms by preventing over-oxidation of Bi. The anion exchange membrane water electrolyzer with Bi/BiCeO H exhibits a low cell voltage of 1.79 V even at a high practical current density of 1.0 A cm . Furthermore, the cell performance remains significantly stable over 100 h with only a 2.2% increase in the initial cell voltage, demonstrating sustainable lattice oxygen redox.</description><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1O20AUhUcVqATabZfVvIDD_MdeQmQKUlAkQOrSur6-A1M5djQzIMID9Tlx-FvdK53zncXH2C8p5lIIdQrdBuZKKC2NkvIbm0mrZGFEZQ_YTFTaFpUz5RE7TumfEKJywn1nR7q0tjQLN2P_bzO0oQ8vkMM48NHzFeQckPj6eXdPA6-fxv7xLbshwP2TeBimdNw-TBzyJRXX1AXI1PHzcHoelrTmcl7yS173hDmOCBn6XcqJ-zHy2vuAgYbMz4b9bP2MDzDcE7-mTRthIP532oqfcL97oZh-sEMPfaKfH_eE3V3Ud8vLYrX-c7U8WxXolCuw1dbjJMA42zlXKY_O6tJr00oB2lirnGoNtGWpoUXSCrWBhRQVIi0q1Cds_j6LcUwpkm-2MWwg7hopmr3vZu-7-fI9Ab_fge1ju6Huq_4pWL8CisV96w</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Jo, Seunghwan</creator><creator>Jeon, Jeong In</creator><creator>Shin, Ki Hoon</creator><creator>Zhang, Liting</creator><creator>Lee, Keon Beom</creator><creator>Hong, John</creator><creator>Sohn, Jung Inn</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3155-4327</orcidid></search><sort><creationdate>202407</creationdate><title>Stabilization of Lattice Oxygen Evolution Reactions in Oxophilic Ce-Mediated Bi/BiCeO 1.8 H Electrocatalysts for Efficient Anion Exchange Membrane Water Electrolyzers</title><author>Jo, Seunghwan ; Jeon, Jeong In ; Shin, Ki Hoon ; Zhang, Liting ; Lee, Keon Beom ; Hong, John ; Sohn, Jung Inn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626-cb35fc521465d6692fc6538f34b10a3455262b4ab883abce32c34a7109cce79c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Seunghwan</creatorcontrib><creatorcontrib>Jeon, Jeong In</creatorcontrib><creatorcontrib>Shin, Ki Hoon</creatorcontrib><creatorcontrib>Zhang, Liting</creatorcontrib><creatorcontrib>Lee, Keon Beom</creatorcontrib><creatorcontrib>Hong, John</creatorcontrib><creatorcontrib>Sohn, Jung Inn</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Seunghwan</au><au>Jeon, Jeong In</au><au>Shin, Ki Hoon</au><au>Zhang, Liting</au><au>Lee, Keon Beom</au><au>Hong, John</au><au>Sohn, Jung Inn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of Lattice Oxygen Evolution Reactions in Oxophilic Ce-Mediated Bi/BiCeO 1.8 H Electrocatalysts for Efficient Anion Exchange Membrane Water Electrolyzers</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-07</date><risdate>2024</risdate><volume>36</volume><issue>27</issue><spage>e2314211</spage><pages>e2314211-</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The lattice oxygen mechanism (LOM) offers an efficient reaction pathway for oxygen evolution reactions (OERs) in energy storage and conversion systems. Owing to the involvement of active lattice oxygen enhancing electrochemical activity, addressing the structural and electrochemical stabilities of LOM materials is crucial. Herein, a heterostructure (Bi/BiCeO H) containing abundant under-coordinated oxygen atoms having oxygen nonbonding states is synthesized by a simple electrochemical deposition method. Given the difference in reduction potentials between Bi and Ce, partially reduced Bi nanoparticles and surrounding under-coordinated oxygen atoms are generated in BiCeO H. It is found that the lattice oxygen can be activated as a reactant of the OER when the valence state of Bi increases to Bi , leading to increased metal-oxygen covalency and that the oxophilic Ce / redox couple can maintain the Bi nanoparticles and surrounding under-coordinated oxygen atoms by preventing over-oxidation of Bi. The anion exchange membrane water electrolyzer with Bi/BiCeO H exhibits a low cell voltage of 1.79 V even at a high practical current density of 1.0 A cm . Furthermore, the cell performance remains significantly stable over 100 h with only a 2.2% increase in the initial cell voltage, demonstrating sustainable lattice oxygen redox.</abstract><cop>Germany</cop><pmid>38558476</pmid><doi>10.1002/adma.202314211</doi><orcidid>https://orcid.org/0000-0002-3155-4327</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-07, Vol.36 (27), p.e2314211
issn 0935-9648
1521-4095
language eng
recordid cdi_crossref_primary_10_1002_adma_202314211
source Wiley-Blackwell Read & Publish Collection
title Stabilization of Lattice Oxygen Evolution Reactions in Oxophilic Ce-Mediated Bi/BiCeO 1.8 H Electrocatalysts for Efficient Anion Exchange Membrane Water Electrolyzers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A01%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20Lattice%20Oxygen%20Evolution%20Reactions%20in%20Oxophilic%20Ce-Mediated%20Bi/BiCeO%201.8%20H%20Electrocatalysts%20for%20Efficient%20Anion%20Exchange%20Membrane%20Water%20Electrolyzers&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Jo,%20Seunghwan&rft.date=2024-07&rft.volume=36&rft.issue=27&rft.spage=e2314211&rft.pages=e2314211-&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202314211&rft_dat=%3Cpubmed_cross%3E38558476%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c626-cb35fc521465d6692fc6538f34b10a3455262b4ab883abce32c34a7109cce79c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/38558476&rfr_iscdi=true