Loading…
Stabilization of Lattice Oxygen Evolution Reactions in Oxophilic Ce-Mediated Bi/BiCeO 1.8 H Electrocatalysts for Efficient Anion Exchange Membrane Water Electrolyzers
The lattice oxygen mechanism (LOM) offers an efficient reaction pathway for oxygen evolution reactions (OERs) in energy storage and conversion systems. Owing to the involvement of active lattice oxygen enhancing electrochemical activity, addressing the structural and electrochemical stabilities of L...
Saved in:
Published in: | Advanced materials (Weinheim) 2024-07, Vol.36 (27), p.e2314211 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c626-cb35fc521465d6692fc6538f34b10a3455262b4ab883abce32c34a7109cce79c3 |
container_end_page | |
container_issue | 27 |
container_start_page | e2314211 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Jo, Seunghwan Jeon, Jeong In Shin, Ki Hoon Zhang, Liting Lee, Keon Beom Hong, John Sohn, Jung Inn |
description | The lattice oxygen mechanism (LOM) offers an efficient reaction pathway for oxygen evolution reactions (OERs) in energy storage and conversion systems. Owing to the involvement of active lattice oxygen enhancing electrochemical activity, addressing the structural and electrochemical stabilities of LOM materials is crucial. Herein, a heterostructure (Bi/BiCeO
H) containing abundant under-coordinated oxygen atoms having oxygen nonbonding states is synthesized by a simple electrochemical deposition method. Given the difference in reduction potentials between Bi and Ce, partially reduced Bi nanoparticles and surrounding under-coordinated oxygen atoms are generated in BiCeO
H. It is found that the lattice oxygen can be activated as a reactant of the OER when the valence state of Bi increases to Bi
, leading to increased metal-oxygen covalency and that the oxophilic Ce
/
redox couple can maintain the Bi nanoparticles and surrounding under-coordinated oxygen atoms by preventing over-oxidation of Bi. The anion exchange membrane water electrolyzer with Bi/BiCeO
H exhibits a low cell voltage of 1.79 V even at a high practical current density of 1.0 A cm
. Furthermore, the cell performance remains significantly stable over 100 h with only a 2.2% increase in the initial cell voltage, demonstrating sustainable lattice oxygen redox. |
doi_str_mv | 10.1002/adma.202314211 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adma_202314211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38558476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626-cb35fc521465d6692fc6538f34b10a3455262b4ab883abce32c34a7109cce79c3</originalsourceid><addsrcrecordid>eNo9kM1O20AUhUcVqATabZfVvIDD_MdeQmQKUlAkQOrSur6-A1M5djQzIMID9Tlx-FvdK53zncXH2C8p5lIIdQrdBuZKKC2NkvIbm0mrZGFEZQ_YTFTaFpUz5RE7TumfEKJywn1nR7q0tjQLN2P_bzO0oQ8vkMM48NHzFeQckPj6eXdPA6-fxv7xLbshwP2TeBimdNw-TBzyJRXX1AXI1PHzcHoelrTmcl7yS173hDmOCBn6XcqJ-zHy2vuAgYbMz4b9bP2MDzDcE7-mTRthIP532oqfcL97oZh-sEMPfaKfH_eE3V3Ud8vLYrX-c7U8WxXolCuw1dbjJMA42zlXKY_O6tJr00oB2lirnGoNtGWpoUXSCrWBhRQVIi0q1Cds_j6LcUwpkm-2MWwg7hopmr3vZu-7-fI9Ab_fge1ju6Huq_4pWL8CisV96w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stabilization of Lattice Oxygen Evolution Reactions in Oxophilic Ce-Mediated Bi/BiCeO 1.8 H Electrocatalysts for Efficient Anion Exchange Membrane Water Electrolyzers</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Jo, Seunghwan ; Jeon, Jeong In ; Shin, Ki Hoon ; Zhang, Liting ; Lee, Keon Beom ; Hong, John ; Sohn, Jung Inn</creator><creatorcontrib>Jo, Seunghwan ; Jeon, Jeong In ; Shin, Ki Hoon ; Zhang, Liting ; Lee, Keon Beom ; Hong, John ; Sohn, Jung Inn</creatorcontrib><description>The lattice oxygen mechanism (LOM) offers an efficient reaction pathway for oxygen evolution reactions (OERs) in energy storage and conversion systems. Owing to the involvement of active lattice oxygen enhancing electrochemical activity, addressing the structural and electrochemical stabilities of LOM materials is crucial. Herein, a heterostructure (Bi/BiCeO
H) containing abundant under-coordinated oxygen atoms having oxygen nonbonding states is synthesized by a simple electrochemical deposition method. Given the difference in reduction potentials between Bi and Ce, partially reduced Bi nanoparticles and surrounding under-coordinated oxygen atoms are generated in BiCeO
H. It is found that the lattice oxygen can be activated as a reactant of the OER when the valence state of Bi increases to Bi
, leading to increased metal-oxygen covalency and that the oxophilic Ce
/
redox couple can maintain the Bi nanoparticles and surrounding under-coordinated oxygen atoms by preventing over-oxidation of Bi. The anion exchange membrane water electrolyzer with Bi/BiCeO
H exhibits a low cell voltage of 1.79 V even at a high practical current density of 1.0 A cm
. Furthermore, the cell performance remains significantly stable over 100 h with only a 2.2% increase in the initial cell voltage, demonstrating sustainable lattice oxygen redox.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202314211</identifier><identifier>PMID: 38558476</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced materials (Weinheim), 2024-07, Vol.36 (27), p.e2314211</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c626-cb35fc521465d6692fc6538f34b10a3455262b4ab883abce32c34a7109cce79c3</cites><orcidid>0000-0002-3155-4327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38558476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jo, Seunghwan</creatorcontrib><creatorcontrib>Jeon, Jeong In</creatorcontrib><creatorcontrib>Shin, Ki Hoon</creatorcontrib><creatorcontrib>Zhang, Liting</creatorcontrib><creatorcontrib>Lee, Keon Beom</creatorcontrib><creatorcontrib>Hong, John</creatorcontrib><creatorcontrib>Sohn, Jung Inn</creatorcontrib><title>Stabilization of Lattice Oxygen Evolution Reactions in Oxophilic Ce-Mediated Bi/BiCeO 1.8 H Electrocatalysts for Efficient Anion Exchange Membrane Water Electrolyzers</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The lattice oxygen mechanism (LOM) offers an efficient reaction pathway for oxygen evolution reactions (OERs) in energy storage and conversion systems. Owing to the involvement of active lattice oxygen enhancing electrochemical activity, addressing the structural and electrochemical stabilities of LOM materials is crucial. Herein, a heterostructure (Bi/BiCeO
H) containing abundant under-coordinated oxygen atoms having oxygen nonbonding states is synthesized by a simple electrochemical deposition method. Given the difference in reduction potentials between Bi and Ce, partially reduced Bi nanoparticles and surrounding under-coordinated oxygen atoms are generated in BiCeO
H. It is found that the lattice oxygen can be activated as a reactant of the OER when the valence state of Bi increases to Bi
, leading to increased metal-oxygen covalency and that the oxophilic Ce
/
redox couple can maintain the Bi nanoparticles and surrounding under-coordinated oxygen atoms by preventing over-oxidation of Bi. The anion exchange membrane water electrolyzer with Bi/BiCeO
H exhibits a low cell voltage of 1.79 V even at a high practical current density of 1.0 A cm
. Furthermore, the cell performance remains significantly stable over 100 h with only a 2.2% increase in the initial cell voltage, demonstrating sustainable lattice oxygen redox.</description><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1O20AUhUcVqATabZfVvIDD_MdeQmQKUlAkQOrSur6-A1M5djQzIMID9Tlx-FvdK53zncXH2C8p5lIIdQrdBuZKKC2NkvIbm0mrZGFEZQ_YTFTaFpUz5RE7TumfEKJywn1nR7q0tjQLN2P_bzO0oQ8vkMM48NHzFeQckPj6eXdPA6-fxv7xLbshwP2TeBimdNw-TBzyJRXX1AXI1PHzcHoelrTmcl7yS173hDmOCBn6XcqJ-zHy2vuAgYbMz4b9bP2MDzDcE7-mTRthIP532oqfcL97oZh-sEMPfaKfH_eE3V3Ud8vLYrX-c7U8WxXolCuw1dbjJMA42zlXKY_O6tJr00oB2lirnGoNtGWpoUXSCrWBhRQVIi0q1Cds_j6LcUwpkm-2MWwg7hopmr3vZu-7-fI9Ab_fge1ju6Huq_4pWL8CisV96w</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Jo, Seunghwan</creator><creator>Jeon, Jeong In</creator><creator>Shin, Ki Hoon</creator><creator>Zhang, Liting</creator><creator>Lee, Keon Beom</creator><creator>Hong, John</creator><creator>Sohn, Jung Inn</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3155-4327</orcidid></search><sort><creationdate>202407</creationdate><title>Stabilization of Lattice Oxygen Evolution Reactions in Oxophilic Ce-Mediated Bi/BiCeO 1.8 H Electrocatalysts for Efficient Anion Exchange Membrane Water Electrolyzers</title><author>Jo, Seunghwan ; Jeon, Jeong In ; Shin, Ki Hoon ; Zhang, Liting ; Lee, Keon Beom ; Hong, John ; Sohn, Jung Inn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626-cb35fc521465d6692fc6538f34b10a3455262b4ab883abce32c34a7109cce79c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Seunghwan</creatorcontrib><creatorcontrib>Jeon, Jeong In</creatorcontrib><creatorcontrib>Shin, Ki Hoon</creatorcontrib><creatorcontrib>Zhang, Liting</creatorcontrib><creatorcontrib>Lee, Keon Beom</creatorcontrib><creatorcontrib>Hong, John</creatorcontrib><creatorcontrib>Sohn, Jung Inn</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Seunghwan</au><au>Jeon, Jeong In</au><au>Shin, Ki Hoon</au><au>Zhang, Liting</au><au>Lee, Keon Beom</au><au>Hong, John</au><au>Sohn, Jung Inn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of Lattice Oxygen Evolution Reactions in Oxophilic Ce-Mediated Bi/BiCeO 1.8 H Electrocatalysts for Efficient Anion Exchange Membrane Water Electrolyzers</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-07</date><risdate>2024</risdate><volume>36</volume><issue>27</issue><spage>e2314211</spage><pages>e2314211-</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The lattice oxygen mechanism (LOM) offers an efficient reaction pathway for oxygen evolution reactions (OERs) in energy storage and conversion systems. Owing to the involvement of active lattice oxygen enhancing electrochemical activity, addressing the structural and electrochemical stabilities of LOM materials is crucial. Herein, a heterostructure (Bi/BiCeO
H) containing abundant under-coordinated oxygen atoms having oxygen nonbonding states is synthesized by a simple electrochemical deposition method. Given the difference in reduction potentials between Bi and Ce, partially reduced Bi nanoparticles and surrounding under-coordinated oxygen atoms are generated in BiCeO
H. It is found that the lattice oxygen can be activated as a reactant of the OER when the valence state of Bi increases to Bi
, leading to increased metal-oxygen covalency and that the oxophilic Ce
/
redox couple can maintain the Bi nanoparticles and surrounding under-coordinated oxygen atoms by preventing over-oxidation of Bi. The anion exchange membrane water electrolyzer with Bi/BiCeO
H exhibits a low cell voltage of 1.79 V even at a high practical current density of 1.0 A cm
. Furthermore, the cell performance remains significantly stable over 100 h with only a 2.2% increase in the initial cell voltage, demonstrating sustainable lattice oxygen redox.</abstract><cop>Germany</cop><pmid>38558476</pmid><doi>10.1002/adma.202314211</doi><orcidid>https://orcid.org/0000-0002-3155-4327</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-07, Vol.36 (27), p.e2314211 |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adma_202314211 |
source | Wiley-Blackwell Read & Publish Collection |
title | Stabilization of Lattice Oxygen Evolution Reactions in Oxophilic Ce-Mediated Bi/BiCeO 1.8 H Electrocatalysts for Efficient Anion Exchange Membrane Water Electrolyzers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A01%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20Lattice%20Oxygen%20Evolution%20Reactions%20in%20Oxophilic%20Ce-Mediated%20Bi/BiCeO%201.8%20H%20Electrocatalysts%20for%20Efficient%20Anion%20Exchange%20Membrane%20Water%20Electrolyzers&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Jo,%20Seunghwan&rft.date=2024-07&rft.volume=36&rft.issue=27&rft.spage=e2314211&rft.pages=e2314211-&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202314211&rft_dat=%3Cpubmed_cross%3E38558476%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c626-cb35fc521465d6692fc6538f34b10a3455262b4ab883abce32c34a7109cce79c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/38558476&rfr_iscdi=true |