Loading…
A Boron, Nitrogen, and Oxygen Doped π-Extended Helical Pure Blue Multiresonant Thermally Activated Delayed Fluorescent Emitter for Organic Light Emitting Diodes That Shows Fast k RISC Without the Use of Heavy Atoms
Narrowband emissive multiresonant thermally activated delayed fluorescence (MR-TADF) emitters are a promising solution to achieve the current industry targeted color standard, BT.2020, for blue color without using optical filters, aiming for high efficiency organic light-emitting diodes (OLEDs). How...
Saved in:
Published in: | Advanced materials (Weinheim) 2024-06, Vol.36 (26), p.e2402289 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Narrowband emissive multiresonant thermally activated delayed fluorescence (MR-TADF) emitters are a promising solution to achieve the current industry targeted color standard, BT.2020, for blue color without using optical filters, aiming for high efficiency organic light-emitting diodes (OLEDs). However, their long triplet lifetimes, largely affected by their slow reverse intersystem crossing rates, adversely affect device stability. In this study, a helical MR-TADF emitter (f-DOABNA) has been designed and synthesized. Because of its π-delocalized structure, f-DOABNA possesses a small singlet-triplet gap, ΔE
, and displays simultaneously an exceptionally faster reverse intersystem crossing rate constant, k
, of up to 2 × 10
s
and a very high photoluminescence quantum yield, Φ
, of over 90% in both solution and doped films. The OLED with f-DOABNA as the emitter achieved a narrow deep-blue emission at 445 nm (full width at half-maximum of 24 nm) associated with CIE coordinates of 0.150, 0.041, and showed a high maximum external quantum efficiency, EQE
, of ∼20%. This article is protected by copyright. All rights reserved. |
---|---|
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.202402289 |