Loading…
Hybrid Membranes Dispersed with Superhydrophilic TiO 2 Nanotubes Toward Ultra‐Stable and High‐Performance Vanadium Redox Flow Batteries
The vanadium redox flow battery (VRFB) is a large‐scale energy storage technique and has been regarded as a promising candidate to integrate intermittent renewable energy with the grid. Its long‐term stability has so far been limited by the core component, an ion exchange membrane with low ion selec...
Saved in:
Published in: | Advanced energy materials 2020-06, Vol.10 (22) |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The vanadium redox flow battery (VRFB) is a large‐scale energy storage technique and has been regarded as a promising candidate to integrate intermittent renewable energy with the grid. Its long‐term stability has so far been limited by the core component, an ion exchange membrane with low ion selectivity. Here a hybrid membrane with superhydrophilic TiO
2
nanotubes dispersed in a Nafion matrix is reported. The VRFB single cell with the hybrid membrane exhibits an impressive performance with high coulombic efficiency (CE, ≈98.3%) and outstanding energy efficiency (EE, ≈84.4%) at 120 mA cm
−2
, which is higher than that of the commercial Nafion 212 membrane (CE, ≈94.5%; EE, ≈79.2%). More importantly, the cell maintains a discharge capacity of ≈55.7% after 1400 cycles (over 518 h), in obvious contrast to that of ≈20% after only 410 cycles for the one using commercial Nafion 212. This is attributed to the high ion selectivity of the hybrid membrane, because of, 1) the blocked and elongated ion diffusion pathway induced by the dispersed nanotubes and 2) binding and alignment of the sulfonic acid groups on nanotube surface. The high‐performance membranes may also find important applications in other fields, such as fuel cells, dialytic batteries, and water treatment. |
---|---|
ISSN: | 1614-6832 1614-6840 |
DOI: | 10.1002/aenm.201904041 |