Loading…

Harnessing the Power of Nano‐Ferroelectrics: BaTiO 3 /MXene (Ti 3 C 2 T x ) Composites for Enhanced Lithium Storage

2D Ti 3 C 2 T x MXene is a desirable electrode material for advanced lithium‐ion batteries (LIBs) in the pursuit of high energy and power densities, owing to its extensive reactive area and surface‐induced pseudo‐capacitance. Here, a novel synergistic strategy for fortifying lithium storage capabili...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2024-11, Vol.14 (43)
Main Authors: Tian, Miao, Lyu, Jing, Su, Ran, Zhang, Xu, Wang, Kexin, Lv, Xiang, Zhang, Dawei, Yang, Shuo‐Wang, Yip, John Hon Kay, Hao, Zhongkai, Xu, Guo Qin
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-crossref_primary_10_1002_aenm_2024019883
container_end_page
container_issue 43
container_start_page
container_title Advanced energy materials
container_volume 14
creator Tian, Miao
Lyu, Jing
Su, Ran
Zhang, Xu
Wang, Kexin
Lv, Xiang
Zhang, Dawei
Yang, Shuo‐Wang
Yip, John Hon Kay
Hao, Zhongkai
Xu, Guo Qin
description 2D Ti 3 C 2 T x MXene is a desirable electrode material for advanced lithium‐ion batteries (LIBs) in the pursuit of high energy and power densities, owing to its extensive reactive area and surface‐induced pseudo‐capacitance. Here, a novel synergistic strategy for fortifying lithium storage capability is first proposed, by in‐situ anchoring BaTiO 3 ferroelectric nanoparticles on few‐layered Ti 3 C 2 T x nanosheets (BT/f‐Ti 3 C 2 T x ) using a hydrothermal method. The uniform BaTiO 3 nanoparticles effectively prevent the restacking of Ti 3 C 2 T x nanosheets, successfully deplete metastable Ti atoms, and intriguingly form a thin and well‐adhered solid electrolyte interface layer, enhancing the aggregation‐resistant, oxidation‐resistant, and electrochemical properties of Ti 3 C 2 T x . Simultaneously, the internal electric fields, originating from the spontaneous polarization of BaTiO 3 ferroelectric nanoparticles, can augment the adsorption of Li + , boosting the lithium storage capacity and reaction kinetics. The resulting composite electrode displays a remarkable charge capacity of 84 mAh g −1 at 10 A g −1 , almost five times that of pristine Ti 3 C 2 T x electrode. The excellent rate performance and cyclability make BT/f‐Ti 3 C 2 T x composites highly attractive for LIBs. Furthermore, this synthetic approach presented here is scalable and can be extended to other Ti‐based materials. This strategy is expected to underscore the considerable potential of ferroelectric composites for integration into high‐performance LIBs.
doi_str_mv 10.1002/aenm.202401988
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_aenm_202401988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_aenm_202401988</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_aenm_2024019883</originalsourceid><addsrcrecordid>eNqVj71OAkEUhSdGE4nQUt9SC5b52ZCF0g2EQtSELewmk-UuO4SdIfcOUTsfwWf0SYTE0Huac77iFJ8QQyUzJaUeOwxdpqXOpZoWxZXoqYnKR5Mil9eXbfStGDDv5Cn5VEljeuK4dBSQ2YctpBbhNb4jQWzg2YX48_W9QKKIe6wT-Zpn8Ogq_wIGxqs3DAj3lT9BCRoq-IAHKGN3iOwTMjSRYB5aF2rcwJNPrT92sE6R3Bb74qZxe8bBX9-JbDGvyuWopshM2NgD-c7Rp1XSnv3s2c9e_My_D79wsVdl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Harnessing the Power of Nano‐Ferroelectrics: BaTiO 3 /MXene (Ti 3 C 2 T x ) Composites for Enhanced Lithium Storage</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Tian, Miao ; Lyu, Jing ; Su, Ran ; Zhang, Xu ; Wang, Kexin ; Lv, Xiang ; Zhang, Dawei ; Yang, Shuo‐Wang ; Yip, John Hon Kay ; Hao, Zhongkai ; Xu, Guo Qin</creator><creatorcontrib>Tian, Miao ; Lyu, Jing ; Su, Ran ; Zhang, Xu ; Wang, Kexin ; Lv, Xiang ; Zhang, Dawei ; Yang, Shuo‐Wang ; Yip, John Hon Kay ; Hao, Zhongkai ; Xu, Guo Qin</creatorcontrib><description>2D Ti 3 C 2 T x MXene is a desirable electrode material for advanced lithium‐ion batteries (LIBs) in the pursuit of high energy and power densities, owing to its extensive reactive area and surface‐induced pseudo‐capacitance. Here, a novel synergistic strategy for fortifying lithium storage capability is first proposed, by in‐situ anchoring BaTiO 3 ferroelectric nanoparticles on few‐layered Ti 3 C 2 T x nanosheets (BT/f‐Ti 3 C 2 T x ) using a hydrothermal method. The uniform BaTiO 3 nanoparticles effectively prevent the restacking of Ti 3 C 2 T x nanosheets, successfully deplete metastable Ti atoms, and intriguingly form a thin and well‐adhered solid electrolyte interface layer, enhancing the aggregation‐resistant, oxidation‐resistant, and electrochemical properties of Ti 3 C 2 T x . Simultaneously, the internal electric fields, originating from the spontaneous polarization of BaTiO 3 ferroelectric nanoparticles, can augment the adsorption of Li + , boosting the lithium storage capacity and reaction kinetics. The resulting composite electrode displays a remarkable charge capacity of 84 mAh g −1 at 10 A g −1 , almost five times that of pristine Ti 3 C 2 T x electrode. The excellent rate performance and cyclability make BT/f‐Ti 3 C 2 T x composites highly attractive for LIBs. Furthermore, this synthetic approach presented here is scalable and can be extended to other Ti‐based materials. This strategy is expected to underscore the considerable potential of ferroelectric composites for integration into high‐performance LIBs.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202401988</identifier><language>eng</language><ispartof>Advanced energy materials, 2024-11, Vol.14 (43)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_aenm_2024019883</cites><orcidid>0000-0003-4671-7923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Tian, Miao</creatorcontrib><creatorcontrib>Lyu, Jing</creatorcontrib><creatorcontrib>Su, Ran</creatorcontrib><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Wang, Kexin</creatorcontrib><creatorcontrib>Lv, Xiang</creatorcontrib><creatorcontrib>Zhang, Dawei</creatorcontrib><creatorcontrib>Yang, Shuo‐Wang</creatorcontrib><creatorcontrib>Yip, John Hon Kay</creatorcontrib><creatorcontrib>Hao, Zhongkai</creatorcontrib><creatorcontrib>Xu, Guo Qin</creatorcontrib><title>Harnessing the Power of Nano‐Ferroelectrics: BaTiO 3 /MXene (Ti 3 C 2 T x ) Composites for Enhanced Lithium Storage</title><title>Advanced energy materials</title><description>2D Ti 3 C 2 T x MXene is a desirable electrode material for advanced lithium‐ion batteries (LIBs) in the pursuit of high energy and power densities, owing to its extensive reactive area and surface‐induced pseudo‐capacitance. Here, a novel synergistic strategy for fortifying lithium storage capability is first proposed, by in‐situ anchoring BaTiO 3 ferroelectric nanoparticles on few‐layered Ti 3 C 2 T x nanosheets (BT/f‐Ti 3 C 2 T x ) using a hydrothermal method. The uniform BaTiO 3 nanoparticles effectively prevent the restacking of Ti 3 C 2 T x nanosheets, successfully deplete metastable Ti atoms, and intriguingly form a thin and well‐adhered solid electrolyte interface layer, enhancing the aggregation‐resistant, oxidation‐resistant, and electrochemical properties of Ti 3 C 2 T x . Simultaneously, the internal electric fields, originating from the spontaneous polarization of BaTiO 3 ferroelectric nanoparticles, can augment the adsorption of Li + , boosting the lithium storage capacity and reaction kinetics. The resulting composite electrode displays a remarkable charge capacity of 84 mAh g −1 at 10 A g −1 , almost five times that of pristine Ti 3 C 2 T x electrode. The excellent rate performance and cyclability make BT/f‐Ti 3 C 2 T x composites highly attractive for LIBs. Furthermore, this synthetic approach presented here is scalable and can be extended to other Ti‐based materials. This strategy is expected to underscore the considerable potential of ferroelectric composites for integration into high‐performance LIBs.</description><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVj71OAkEUhSdGE4nQUt9SC5b52ZCF0g2EQtSELewmk-UuO4SdIfcOUTsfwWf0SYTE0Huac77iFJ8QQyUzJaUeOwxdpqXOpZoWxZXoqYnKR5Mil9eXbfStGDDv5Cn5VEljeuK4dBSQ2YctpBbhNb4jQWzg2YX48_W9QKKIe6wT-Zpn8Ogq_wIGxqs3DAj3lT9BCRoq-IAHKGN3iOwTMjSRYB5aF2rcwJNPrT92sE6R3Bb74qZxe8bBX9-JbDGvyuWopshM2NgD-c7Rp1XSnv3s2c9e_My_D79wsVdl</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Tian, Miao</creator><creator>Lyu, Jing</creator><creator>Su, Ran</creator><creator>Zhang, Xu</creator><creator>Wang, Kexin</creator><creator>Lv, Xiang</creator><creator>Zhang, Dawei</creator><creator>Yang, Shuo‐Wang</creator><creator>Yip, John Hon Kay</creator><creator>Hao, Zhongkai</creator><creator>Xu, Guo Qin</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4671-7923</orcidid></search><sort><creationdate>202411</creationdate><title>Harnessing the Power of Nano‐Ferroelectrics: BaTiO 3 /MXene (Ti 3 C 2 T x ) Composites for Enhanced Lithium Storage</title><author>Tian, Miao ; Lyu, Jing ; Su, Ran ; Zhang, Xu ; Wang, Kexin ; Lv, Xiang ; Zhang, Dawei ; Yang, Shuo‐Wang ; Yip, John Hon Kay ; Hao, Zhongkai ; Xu, Guo Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_aenm_2024019883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Miao</creatorcontrib><creatorcontrib>Lyu, Jing</creatorcontrib><creatorcontrib>Su, Ran</creatorcontrib><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Wang, Kexin</creatorcontrib><creatorcontrib>Lv, Xiang</creatorcontrib><creatorcontrib>Zhang, Dawei</creatorcontrib><creatorcontrib>Yang, Shuo‐Wang</creatorcontrib><creatorcontrib>Yip, John Hon Kay</creatorcontrib><creatorcontrib>Hao, Zhongkai</creatorcontrib><creatorcontrib>Xu, Guo Qin</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Miao</au><au>Lyu, Jing</au><au>Su, Ran</au><au>Zhang, Xu</au><au>Wang, Kexin</au><au>Lv, Xiang</au><au>Zhang, Dawei</au><au>Yang, Shuo‐Wang</au><au>Yip, John Hon Kay</au><au>Hao, Zhongkai</au><au>Xu, Guo Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing the Power of Nano‐Ferroelectrics: BaTiO 3 /MXene (Ti 3 C 2 T x ) Composites for Enhanced Lithium Storage</atitle><jtitle>Advanced energy materials</jtitle><date>2024-11</date><risdate>2024</risdate><volume>14</volume><issue>43</issue><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>2D Ti 3 C 2 T x MXene is a desirable electrode material for advanced lithium‐ion batteries (LIBs) in the pursuit of high energy and power densities, owing to its extensive reactive area and surface‐induced pseudo‐capacitance. Here, a novel synergistic strategy for fortifying lithium storage capability is first proposed, by in‐situ anchoring BaTiO 3 ferroelectric nanoparticles on few‐layered Ti 3 C 2 T x nanosheets (BT/f‐Ti 3 C 2 T x ) using a hydrothermal method. The uniform BaTiO 3 nanoparticles effectively prevent the restacking of Ti 3 C 2 T x nanosheets, successfully deplete metastable Ti atoms, and intriguingly form a thin and well‐adhered solid electrolyte interface layer, enhancing the aggregation‐resistant, oxidation‐resistant, and electrochemical properties of Ti 3 C 2 T x . Simultaneously, the internal electric fields, originating from the spontaneous polarization of BaTiO 3 ferroelectric nanoparticles, can augment the adsorption of Li + , boosting the lithium storage capacity and reaction kinetics. The resulting composite electrode displays a remarkable charge capacity of 84 mAh g −1 at 10 A g −1 , almost five times that of pristine Ti 3 C 2 T x electrode. The excellent rate performance and cyclability make BT/f‐Ti 3 C 2 T x composites highly attractive for LIBs. Furthermore, this synthetic approach presented here is scalable and can be extended to other Ti‐based materials. This strategy is expected to underscore the considerable potential of ferroelectric composites for integration into high‐performance LIBs.</abstract><doi>10.1002/aenm.202401988</doi><orcidid>https://orcid.org/0000-0003-4671-7923</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2024-11, Vol.14 (43)
issn 1614-6832
1614-6840
language eng
recordid cdi_crossref_primary_10_1002_aenm_202401988
source Wiley-Blackwell Read & Publish Collection
title Harnessing the Power of Nano‐Ferroelectrics: BaTiO 3 /MXene (Ti 3 C 2 T x ) Composites for Enhanced Lithium Storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20the%20Power%20of%20Nano%E2%80%90Ferroelectrics:%20BaTiO%203%20/MXene%20(Ti%203%20C%202%20T%20x%20)%20Composites%20for%20Enhanced%20Lithium%20Storage&rft.jtitle=Advanced%20energy%20materials&rft.au=Tian,%20Miao&rft.date=2024-11&rft.volume=14&rft.issue=43&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202401988&rft_dat=%3Ccrossref%3E10_1002_aenm_202401988%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-crossref_primary_10_1002_aenm_2024019883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true