Loading…

Solution of material balances for flow sheets modeled with elementary modules: The constrained case

Flow sheet material balance calculations are greatly simplified if all process input streams, reaction stoichiometry, and conversions, as well as all stream and component split fractions, are specified. Yet in many applications, especially those arising in process design, the available material bala...

Full description

Saved in:
Bibliographic Details
Published in:AIChE journal 1979-03, Vol.25 (2), p.220-229
Main Authors: Sood, Mohinder K., Reklaitis, G. V.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3573-61cd41ca4ee4c4869482790eb9775fc309308963349c69553d9f0f0625d078c53
cites cdi_FETCH-LOGICAL-c3573-61cd41ca4ee4c4869482790eb9775fc309308963349c69553d9f0f0625d078c53
container_end_page 229
container_issue 2
container_start_page 220
container_title AIChE journal
container_volume 25
creator Sood, Mohinder K.
Reklaitis, G. V.
description Flow sheet material balance calculations are greatly simplified if all process input streams, reaction stoichiometry, and conversions, as well as all stream and component split fractions, are specified. Yet in many applications, especially those arising in process design, the available material balance specifications can take on many alternate forms. Each of these additional specifications can readily be expressed as a linear or nonlinear constraint equation involving species or total flow rates. In this paper, an approach is developed for incorporating such specifications within the computational framework for solving unconstrained material balance problems. The linear as well as the nonlinear constraints are accommodated by generating a parametric solution to the underlying unconstrained problem. The parameters are determined by solving simultaneously first the linear and then the nonlinear constraint equations. Only as many equations are solved iteratively as there are nonlinear constraints.
doi_str_mv 10.1002/aic.690250203
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_aic_690250203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AIC690250203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3573-61cd41ca4ee4c4869482790eb9775fc309308963349c69553d9f0f0625d078c53</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmNw5J4v0OE0TdJwmyYYk8ofwdCOUZa6WqBrUNNp7NvTiWnixMn20-_Z1iPkmsGIAaQ31ruR1JAKSIGfkAETmUqEBnFKBgDAkl5g5-Qixo9-SlWeDoh7C_Wm86GhoaJr22HrbU2XtraNw0ir0NKqDlsaV4hdpOtQYo0l3fpuRftujU1n291e39QYb-l8hdSFJnat9U0POhvxkpxVto54dahD8n5_N588JMXzdDYZF4njQvFEMldmzNkMMXNZLnWWp0oDLrVSonIcNIdcS84z7aQWgpe6ggpkKkpQuRN8SJLfva4NMbZYma_Wr_v3DAOzT8j0CZljQj2vfvmtr3H3P2zGs8lf5-GSjx1-H522_TRScSXM4mlqXuVCF4_zwrzwH3RHeOM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solution of material balances for flow sheets modeled with elementary modules: The constrained case</title><source>Wiley Journal Backfiles</source><creator>Sood, Mohinder K. ; Reklaitis, G. V.</creator><creatorcontrib>Sood, Mohinder K. ; Reklaitis, G. V.</creatorcontrib><description>Flow sheet material balance calculations are greatly simplified if all process input streams, reaction stoichiometry, and conversions, as well as all stream and component split fractions, are specified. Yet in many applications, especially those arising in process design, the available material balance specifications can take on many alternate forms. Each of these additional specifications can readily be expressed as a linear or nonlinear constraint equation involving species or total flow rates. In this paper, an approach is developed for incorporating such specifications within the computational framework for solving unconstrained material balance problems. The linear as well as the nonlinear constraints are accommodated by generating a parametric solution to the underlying unconstrained problem. The parameters are determined by solving simultaneously first the linear and then the nonlinear constraint equations. Only as many equations are solved iteratively as there are nonlinear constraints.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690250203</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><ispartof>AIChE journal, 1979-03, Vol.25 (2), p.220-229</ispartof><rights>Copyright © 1979 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3573-61cd41ca4ee4c4869482790eb9775fc309308963349c69553d9f0f0625d078c53</citedby><cites>FETCH-LOGICAL-c3573-61cd41ca4ee4c4869482790eb9775fc309308963349c69553d9f0f0625d078c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690250203$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690250203$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1411,27905,27906,46030,46454</link.rule.ids></links><search><creatorcontrib>Sood, Mohinder K.</creatorcontrib><creatorcontrib>Reklaitis, G. V.</creatorcontrib><title>Solution of material balances for flow sheets modeled with elementary modules: The constrained case</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Flow sheet material balance calculations are greatly simplified if all process input streams, reaction stoichiometry, and conversions, as well as all stream and component split fractions, are specified. Yet in many applications, especially those arising in process design, the available material balance specifications can take on many alternate forms. Each of these additional specifications can readily be expressed as a linear or nonlinear constraint equation involving species or total flow rates. In this paper, an approach is developed for incorporating such specifications within the computational framework for solving unconstrained material balance problems. The linear as well as the nonlinear constraints are accommodated by generating a parametric solution to the underlying unconstrained problem. The parameters are determined by solving simultaneously first the linear and then the nonlinear constraint equations. Only as many equations are solved iteratively as there are nonlinear constraints.</description><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1979</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmNw5J4v0OE0TdJwmyYYk8ofwdCOUZa6WqBrUNNp7NvTiWnixMn20-_Z1iPkmsGIAaQ31ruR1JAKSIGfkAETmUqEBnFKBgDAkl5g5-Qixo9-SlWeDoh7C_Wm86GhoaJr22HrbU2XtraNw0ir0NKqDlsaV4hdpOtQYo0l3fpuRftujU1n291e39QYb-l8hdSFJnat9U0POhvxkpxVto54dahD8n5_N588JMXzdDYZF4njQvFEMldmzNkMMXNZLnWWp0oDLrVSonIcNIdcS84z7aQWgpe6ggpkKkpQuRN8SJLfva4NMbZYma_Wr_v3DAOzT8j0CZljQj2vfvmtr3H3P2zGs8lf5-GSjx1-H522_TRScSXM4mlqXuVCF4_zwrzwH3RHeOM</recordid><startdate>197903</startdate><enddate>197903</enddate><creator>Sood, Mohinder K.</creator><creator>Reklaitis, G. V.</creator><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197903</creationdate><title>Solution of material balances for flow sheets modeled with elementary modules: The constrained case</title><author>Sood, Mohinder K. ; Reklaitis, G. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3573-61cd41ca4ee4c4869482790eb9775fc309308963349c69553d9f0f0625d078c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1979</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sood, Mohinder K.</creatorcontrib><creatorcontrib>Reklaitis, G. V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sood, Mohinder K.</au><au>Reklaitis, G. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution of material balances for flow sheets modeled with elementary modules: The constrained case</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>1979-03</date><risdate>1979</risdate><volume>25</volume><issue>2</issue><spage>220</spage><epage>229</epage><pages>220-229</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Flow sheet material balance calculations are greatly simplified if all process input streams, reaction stoichiometry, and conversions, as well as all stream and component split fractions, are specified. Yet in many applications, especially those arising in process design, the available material balance specifications can take on many alternate forms. Each of these additional specifications can readily be expressed as a linear or nonlinear constraint equation involving species or total flow rates. In this paper, an approach is developed for incorporating such specifications within the computational framework for solving unconstrained material balance problems. The linear as well as the nonlinear constraints are accommodated by generating a parametric solution to the underlying unconstrained problem. The parameters are determined by solving simultaneously first the linear and then the nonlinear constraint equations. Only as many equations are solved iteratively as there are nonlinear constraints.</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.690250203</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 1979-03, Vol.25 (2), p.220-229
issn 0001-1541
1547-5905
language eng
recordid cdi_crossref_primary_10_1002_aic_690250203
source Wiley Journal Backfiles
title Solution of material balances for flow sheets modeled with elementary modules: The constrained case
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A27%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20of%20material%20balances%20for%20flow%20sheets%20modeled%20with%20elementary%20modules:%20The%20constrained%20case&rft.jtitle=AIChE%20journal&rft.au=Sood,%20Mohinder%20K.&rft.date=1979-03&rft.volume=25&rft.issue=2&rft.spage=220&rft.epage=229&rft.pages=220-229&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.690250203&rft_dat=%3Cwiley_cross%3EAIC690250203%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3573-61cd41ca4ee4c4869482790eb9775fc309308963349c69553d9f0f0625d078c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true