Loading…

Identifying the Evolution of Selenium‐Vacancy‐Modulated MoSe 2 Precatalyst in Lithium–Sulfur Chemistry

Witnessing compositional evolution and identifying the catalytically active moiety of electrocatalysts is of paramount importance in Li–S chemistry. Nevertheless, this field remains elusive. We report the scalable salt‐templated synthesis of Se‐vacancy‐incorporated MoSe 2 architecture (SeVs‐MoSe 2 )...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2021-11, Vol.133 (46), p.24763-24770
Main Authors: Wang, Menglei, Sun, Zhongti, Ci, Haina, Shi, Zixiong, Shen, Lin, Wei, Chaohui, Ding, Yifan, Yang, Xianzhong, Sun, Jingyu
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c841-44453b087cacb1262ed2b717ccb0ad6f60332fd226f54fbc1070a362926a43013
cites cdi_FETCH-LOGICAL-c841-44453b087cacb1262ed2b717ccb0ad6f60332fd226f54fbc1070a362926a43013
container_end_page 24770
container_issue 46
container_start_page 24763
container_title Angewandte Chemie
container_volume 133
creator Wang, Menglei
Sun, Zhongti
Ci, Haina
Shi, Zixiong
Shen, Lin
Wei, Chaohui
Ding, Yifan
Yang, Xianzhong
Sun, Jingyu
description Witnessing compositional evolution and identifying the catalytically active moiety of electrocatalysts is of paramount importance in Li–S chemistry. Nevertheless, this field remains elusive. We report the scalable salt‐templated synthesis of Se‐vacancy‐incorporated MoSe 2 architecture (SeVs‐MoSe 2 ) and reveal the phase evolution of the defective precatalyst in working Li–S batteries. The interaction between lithium polysulfides and SeVs‐MoSe 2 is probed to induce the transformation from SeVs‐MoSe 2 to MoSeS. Furthermore, operando Raman spectroscopy and ex situ X‐ray diffraction measurements in combination with theoretical simulations verify that the effectual MoSeS catalyst could help promote conversion of Li 2 S 2 to Li 2 S, thereby boosting the capacity performance. The Li–S battery accordingly exhibits a satisfactory rate and cycling capability even with and elevated sulfur loading and lean electrolyte conditions (7.67 mg cm −2 ; 4.0 μL mg −1 S ). This work elucidates the design strategies and catalytic mechanisms of efficient electrocatalysts bearing defects.
doi_str_mv 10.1002/ange.202109291
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_ange_202109291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_ange_202109291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c841-44453b087cacb1262ed2b717ccb0ad6f60332fd226f54fbc1070a362926a43013</originalsourceid><addsrcrecordid>eNo90EFKAzEYBeAgCtbq1nUuMPXPn0zSWUqpWmhRaHE7ZDJJG5lmZJIRZucRBG_Yk2hVXL23eW_xEXLNYMIA8EaHrZ0gIIMCC3ZCRixHlnGVq1MyAhAim6IozslFjC8AIFEVI9IsahuSd4MPW5p2ls7f2qZPvg20dXRtGxt8vz-8fzxro4MZvtuqrftGJ1vTVbu2FOlTZ41Ouhlioj7QpU-7n83num9c39HZzu59TN1wSc6cbqK9-ssx2dzNN7OHbPl4v5jdLjMzFSwTQuS8gqky2lQMJdoaK8WUMRXoWjoJnKOrEaXLhasMAwWaSyxQasGB8TGZ_N6aro2xs6587fxed0PJoDxSlUeq8p-KfwGcq2DN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identifying the Evolution of Selenium‐Vacancy‐Modulated MoSe 2 Precatalyst in Lithium–Sulfur Chemistry</title><source>Wiley</source><creator>Wang, Menglei ; Sun, Zhongti ; Ci, Haina ; Shi, Zixiong ; Shen, Lin ; Wei, Chaohui ; Ding, Yifan ; Yang, Xianzhong ; Sun, Jingyu</creator><creatorcontrib>Wang, Menglei ; Sun, Zhongti ; Ci, Haina ; Shi, Zixiong ; Shen, Lin ; Wei, Chaohui ; Ding, Yifan ; Yang, Xianzhong ; Sun, Jingyu</creatorcontrib><description>Witnessing compositional evolution and identifying the catalytically active moiety of electrocatalysts is of paramount importance in Li–S chemistry. Nevertheless, this field remains elusive. We report the scalable salt‐templated synthesis of Se‐vacancy‐incorporated MoSe 2 architecture (SeVs‐MoSe 2 ) and reveal the phase evolution of the defective precatalyst in working Li–S batteries. The interaction between lithium polysulfides and SeVs‐MoSe 2 is probed to induce the transformation from SeVs‐MoSe 2 to MoSeS. Furthermore, operando Raman spectroscopy and ex situ X‐ray diffraction measurements in combination with theoretical simulations verify that the effectual MoSeS catalyst could help promote conversion of Li 2 S 2 to Li 2 S, thereby boosting the capacity performance. The Li–S battery accordingly exhibits a satisfactory rate and cycling capability even with and elevated sulfur loading and lean electrolyte conditions (7.67 mg cm −2 ; 4.0 μL mg −1 S ). This work elucidates the design strategies and catalytic mechanisms of efficient electrocatalysts bearing defects.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202109291</identifier><language>eng</language><ispartof>Angewandte Chemie, 2021-11, Vol.133 (46), p.24763-24770</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c841-44453b087cacb1262ed2b717ccb0ad6f60332fd226f54fbc1070a362926a43013</citedby><cites>FETCH-LOGICAL-c841-44453b087cacb1262ed2b717ccb0ad6f60332fd226f54fbc1070a362926a43013</cites><orcidid>0000-0002-9812-3046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Wang, Menglei</creatorcontrib><creatorcontrib>Sun, Zhongti</creatorcontrib><creatorcontrib>Ci, Haina</creatorcontrib><creatorcontrib>Shi, Zixiong</creatorcontrib><creatorcontrib>Shen, Lin</creatorcontrib><creatorcontrib>Wei, Chaohui</creatorcontrib><creatorcontrib>Ding, Yifan</creatorcontrib><creatorcontrib>Yang, Xianzhong</creatorcontrib><creatorcontrib>Sun, Jingyu</creatorcontrib><title>Identifying the Evolution of Selenium‐Vacancy‐Modulated MoSe 2 Precatalyst in Lithium–Sulfur Chemistry</title><title>Angewandte Chemie</title><description>Witnessing compositional evolution and identifying the catalytically active moiety of electrocatalysts is of paramount importance in Li–S chemistry. Nevertheless, this field remains elusive. We report the scalable salt‐templated synthesis of Se‐vacancy‐incorporated MoSe 2 architecture (SeVs‐MoSe 2 ) and reveal the phase evolution of the defective precatalyst in working Li–S batteries. The interaction between lithium polysulfides and SeVs‐MoSe 2 is probed to induce the transformation from SeVs‐MoSe 2 to MoSeS. Furthermore, operando Raman spectroscopy and ex situ X‐ray diffraction measurements in combination with theoretical simulations verify that the effectual MoSeS catalyst could help promote conversion of Li 2 S 2 to Li 2 S, thereby boosting the capacity performance. The Li–S battery accordingly exhibits a satisfactory rate and cycling capability even with and elevated sulfur loading and lean electrolyte conditions (7.67 mg cm −2 ; 4.0 μL mg −1 S ). This work elucidates the design strategies and catalytic mechanisms of efficient electrocatalysts bearing defects.</description><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo90EFKAzEYBeAgCtbq1nUuMPXPn0zSWUqpWmhRaHE7ZDJJG5lmZJIRZucRBG_Yk2hVXL23eW_xEXLNYMIA8EaHrZ0gIIMCC3ZCRixHlnGVq1MyAhAim6IozslFjC8AIFEVI9IsahuSd4MPW5p2ls7f2qZPvg20dXRtGxt8vz-8fzxro4MZvtuqrftGJ1vTVbu2FOlTZ41Ouhlioj7QpU-7n83num9c39HZzu59TN1wSc6cbqK9-ssx2dzNN7OHbPl4v5jdLjMzFSwTQuS8gqky2lQMJdoaK8WUMRXoWjoJnKOrEaXLhasMAwWaSyxQasGB8TGZ_N6aro2xs6587fxed0PJoDxSlUeq8p-KfwGcq2DN</recordid><startdate>20211108</startdate><enddate>20211108</enddate><creator>Wang, Menglei</creator><creator>Sun, Zhongti</creator><creator>Ci, Haina</creator><creator>Shi, Zixiong</creator><creator>Shen, Lin</creator><creator>Wei, Chaohui</creator><creator>Ding, Yifan</creator><creator>Yang, Xianzhong</creator><creator>Sun, Jingyu</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9812-3046</orcidid></search><sort><creationdate>20211108</creationdate><title>Identifying the Evolution of Selenium‐Vacancy‐Modulated MoSe 2 Precatalyst in Lithium–Sulfur Chemistry</title><author>Wang, Menglei ; Sun, Zhongti ; Ci, Haina ; Shi, Zixiong ; Shen, Lin ; Wei, Chaohui ; Ding, Yifan ; Yang, Xianzhong ; Sun, Jingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c841-44453b087cacb1262ed2b717ccb0ad6f60332fd226f54fbc1070a362926a43013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Menglei</creatorcontrib><creatorcontrib>Sun, Zhongti</creatorcontrib><creatorcontrib>Ci, Haina</creatorcontrib><creatorcontrib>Shi, Zixiong</creatorcontrib><creatorcontrib>Shen, Lin</creatorcontrib><creatorcontrib>Wei, Chaohui</creatorcontrib><creatorcontrib>Ding, Yifan</creatorcontrib><creatorcontrib>Yang, Xianzhong</creatorcontrib><creatorcontrib>Sun, Jingyu</creatorcontrib><collection>CrossRef</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Menglei</au><au>Sun, Zhongti</au><au>Ci, Haina</au><au>Shi, Zixiong</au><au>Shen, Lin</au><au>Wei, Chaohui</au><au>Ding, Yifan</au><au>Yang, Xianzhong</au><au>Sun, Jingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying the Evolution of Selenium‐Vacancy‐Modulated MoSe 2 Precatalyst in Lithium–Sulfur Chemistry</atitle><jtitle>Angewandte Chemie</jtitle><date>2021-11-08</date><risdate>2021</risdate><volume>133</volume><issue>46</issue><spage>24763</spage><epage>24770</epage><pages>24763-24770</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Witnessing compositional evolution and identifying the catalytically active moiety of electrocatalysts is of paramount importance in Li–S chemistry. Nevertheless, this field remains elusive. We report the scalable salt‐templated synthesis of Se‐vacancy‐incorporated MoSe 2 architecture (SeVs‐MoSe 2 ) and reveal the phase evolution of the defective precatalyst in working Li–S batteries. The interaction between lithium polysulfides and SeVs‐MoSe 2 is probed to induce the transformation from SeVs‐MoSe 2 to MoSeS. Furthermore, operando Raman spectroscopy and ex situ X‐ray diffraction measurements in combination with theoretical simulations verify that the effectual MoSeS catalyst could help promote conversion of Li 2 S 2 to Li 2 S, thereby boosting the capacity performance. The Li–S battery accordingly exhibits a satisfactory rate and cycling capability even with and elevated sulfur loading and lean electrolyte conditions (7.67 mg cm −2 ; 4.0 μL mg −1 S ). This work elucidates the design strategies and catalytic mechanisms of efficient electrocatalysts bearing defects.</abstract><doi>10.1002/ange.202109291</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9812-3046</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2021-11, Vol.133 (46), p.24763-24770
issn 0044-8249
1521-3757
language eng
recordid cdi_crossref_primary_10_1002_ange_202109291
source Wiley
title Identifying the Evolution of Selenium‐Vacancy‐Modulated MoSe 2 Precatalyst in Lithium–Sulfur Chemistry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A10%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20the%20Evolution%20of%20Selenium%E2%80%90Vacancy%E2%80%90Modulated%20MoSe%202%20Precatalyst%20in%20Lithium%E2%80%93Sulfur%20Chemistry&rft.jtitle=Angewandte%20Chemie&rft.au=Wang,%20Menglei&rft.date=2021-11-08&rft.volume=133&rft.issue=46&rft.spage=24763&rft.epage=24770&rft.pages=24763-24770&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202109291&rft_dat=%3Ccrossref%3E10_1002_ange_202109291%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c841-44453b087cacb1262ed2b717ccb0ad6f60332fd226f54fbc1070a362926a43013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true