Loading…
Identifying the Evolution of Selenium‐Vacancy‐Modulated MoSe 2 Precatalyst in Lithium–Sulfur Chemistry
Witnessing compositional evolution and identifying the catalytically active moiety of electrocatalysts is of paramount importance in Li–S chemistry. Nevertheless, this field remains elusive. We report the scalable salt‐templated synthesis of Se‐vacancy‐incorporated MoSe 2 architecture (SeVs‐MoSe 2 )...
Saved in:
Published in: | Angewandte Chemie 2021-11, Vol.133 (46), p.24763-24770 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c841-44453b087cacb1262ed2b717ccb0ad6f60332fd226f54fbc1070a362926a43013 |
---|---|
cites | cdi_FETCH-LOGICAL-c841-44453b087cacb1262ed2b717ccb0ad6f60332fd226f54fbc1070a362926a43013 |
container_end_page | 24770 |
container_issue | 46 |
container_start_page | 24763 |
container_title | Angewandte Chemie |
container_volume | 133 |
creator | Wang, Menglei Sun, Zhongti Ci, Haina Shi, Zixiong Shen, Lin Wei, Chaohui Ding, Yifan Yang, Xianzhong Sun, Jingyu |
description | Witnessing compositional evolution and identifying the catalytically active moiety of electrocatalysts is of paramount importance in Li–S chemistry. Nevertheless, this field remains elusive. We report the scalable salt‐templated synthesis of Se‐vacancy‐incorporated MoSe
2
architecture (SeVs‐MoSe
2
) and reveal the phase evolution of the defective precatalyst in working Li–S batteries. The interaction between lithium polysulfides and SeVs‐MoSe
2
is probed to induce the transformation from SeVs‐MoSe
2
to MoSeS. Furthermore, operando Raman spectroscopy and ex situ X‐ray diffraction measurements in combination with theoretical simulations verify that the effectual MoSeS catalyst could help promote conversion of Li
2
S
2
to Li
2
S, thereby boosting the capacity performance. The Li–S battery accordingly exhibits a satisfactory rate and cycling capability even with and elevated sulfur loading and lean electrolyte conditions (7.67 mg cm
−2
; 4.0 μL mg
−1
S
). This work elucidates the design strategies and catalytic mechanisms of efficient electrocatalysts bearing defects. |
doi_str_mv | 10.1002/ange.202109291 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_ange_202109291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_ange_202109291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c841-44453b087cacb1262ed2b717ccb0ad6f60332fd226f54fbc1070a362926a43013</originalsourceid><addsrcrecordid>eNo90EFKAzEYBeAgCtbq1nUuMPXPn0zSWUqpWmhRaHE7ZDJJG5lmZJIRZucRBG_Yk2hVXL23eW_xEXLNYMIA8EaHrZ0gIIMCC3ZCRixHlnGVq1MyAhAim6IozslFjC8AIFEVI9IsahuSd4MPW5p2ls7f2qZPvg20dXRtGxt8vz-8fzxro4MZvtuqrftGJ1vTVbu2FOlTZ41Ouhlioj7QpU-7n83num9c39HZzu59TN1wSc6cbqK9-ssx2dzNN7OHbPl4v5jdLjMzFSwTQuS8gqky2lQMJdoaK8WUMRXoWjoJnKOrEaXLhasMAwWaSyxQasGB8TGZ_N6aro2xs6587fxed0PJoDxSlUeq8p-KfwGcq2DN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identifying the Evolution of Selenium‐Vacancy‐Modulated MoSe 2 Precatalyst in Lithium–Sulfur Chemistry</title><source>Wiley</source><creator>Wang, Menglei ; Sun, Zhongti ; Ci, Haina ; Shi, Zixiong ; Shen, Lin ; Wei, Chaohui ; Ding, Yifan ; Yang, Xianzhong ; Sun, Jingyu</creator><creatorcontrib>Wang, Menglei ; Sun, Zhongti ; Ci, Haina ; Shi, Zixiong ; Shen, Lin ; Wei, Chaohui ; Ding, Yifan ; Yang, Xianzhong ; Sun, Jingyu</creatorcontrib><description>Witnessing compositional evolution and identifying the catalytically active moiety of electrocatalysts is of paramount importance in Li–S chemistry. Nevertheless, this field remains elusive. We report the scalable salt‐templated synthesis of Se‐vacancy‐incorporated MoSe
2
architecture (SeVs‐MoSe
2
) and reveal the phase evolution of the defective precatalyst in working Li–S batteries. The interaction between lithium polysulfides and SeVs‐MoSe
2
is probed to induce the transformation from SeVs‐MoSe
2
to MoSeS. Furthermore, operando Raman spectroscopy and ex situ X‐ray diffraction measurements in combination with theoretical simulations verify that the effectual MoSeS catalyst could help promote conversion of Li
2
S
2
to Li
2
S, thereby boosting the capacity performance. The Li–S battery accordingly exhibits a satisfactory rate and cycling capability even with and elevated sulfur loading and lean electrolyte conditions (7.67 mg cm
−2
; 4.0 μL mg
−1
S
). This work elucidates the design strategies and catalytic mechanisms of efficient electrocatalysts bearing defects.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202109291</identifier><language>eng</language><ispartof>Angewandte Chemie, 2021-11, Vol.133 (46), p.24763-24770</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c841-44453b087cacb1262ed2b717ccb0ad6f60332fd226f54fbc1070a362926a43013</citedby><cites>FETCH-LOGICAL-c841-44453b087cacb1262ed2b717ccb0ad6f60332fd226f54fbc1070a362926a43013</cites><orcidid>0000-0002-9812-3046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Wang, Menglei</creatorcontrib><creatorcontrib>Sun, Zhongti</creatorcontrib><creatorcontrib>Ci, Haina</creatorcontrib><creatorcontrib>Shi, Zixiong</creatorcontrib><creatorcontrib>Shen, Lin</creatorcontrib><creatorcontrib>Wei, Chaohui</creatorcontrib><creatorcontrib>Ding, Yifan</creatorcontrib><creatorcontrib>Yang, Xianzhong</creatorcontrib><creatorcontrib>Sun, Jingyu</creatorcontrib><title>Identifying the Evolution of Selenium‐Vacancy‐Modulated MoSe 2 Precatalyst in Lithium–Sulfur Chemistry</title><title>Angewandte Chemie</title><description>Witnessing compositional evolution and identifying the catalytically active moiety of electrocatalysts is of paramount importance in Li–S chemistry. Nevertheless, this field remains elusive. We report the scalable salt‐templated synthesis of Se‐vacancy‐incorporated MoSe
2
architecture (SeVs‐MoSe
2
) and reveal the phase evolution of the defective precatalyst in working Li–S batteries. The interaction between lithium polysulfides and SeVs‐MoSe
2
is probed to induce the transformation from SeVs‐MoSe
2
to MoSeS. Furthermore, operando Raman spectroscopy and ex situ X‐ray diffraction measurements in combination with theoretical simulations verify that the effectual MoSeS catalyst could help promote conversion of Li
2
S
2
to Li
2
S, thereby boosting the capacity performance. The Li–S battery accordingly exhibits a satisfactory rate and cycling capability even with and elevated sulfur loading and lean electrolyte conditions (7.67 mg cm
−2
; 4.0 μL mg
−1
S
). This work elucidates the design strategies and catalytic mechanisms of efficient electrocatalysts bearing defects.</description><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo90EFKAzEYBeAgCtbq1nUuMPXPn0zSWUqpWmhRaHE7ZDJJG5lmZJIRZucRBG_Yk2hVXL23eW_xEXLNYMIA8EaHrZ0gIIMCC3ZCRixHlnGVq1MyAhAim6IozslFjC8AIFEVI9IsahuSd4MPW5p2ls7f2qZPvg20dXRtGxt8vz-8fzxro4MZvtuqrftGJ1vTVbu2FOlTZ41Ouhlioj7QpU-7n83num9c39HZzu59TN1wSc6cbqK9-ssx2dzNN7OHbPl4v5jdLjMzFSwTQuS8gqky2lQMJdoaK8WUMRXoWjoJnKOrEaXLhasMAwWaSyxQasGB8TGZ_N6aro2xs6587fxed0PJoDxSlUeq8p-KfwGcq2DN</recordid><startdate>20211108</startdate><enddate>20211108</enddate><creator>Wang, Menglei</creator><creator>Sun, Zhongti</creator><creator>Ci, Haina</creator><creator>Shi, Zixiong</creator><creator>Shen, Lin</creator><creator>Wei, Chaohui</creator><creator>Ding, Yifan</creator><creator>Yang, Xianzhong</creator><creator>Sun, Jingyu</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9812-3046</orcidid></search><sort><creationdate>20211108</creationdate><title>Identifying the Evolution of Selenium‐Vacancy‐Modulated MoSe 2 Precatalyst in Lithium–Sulfur Chemistry</title><author>Wang, Menglei ; Sun, Zhongti ; Ci, Haina ; Shi, Zixiong ; Shen, Lin ; Wei, Chaohui ; Ding, Yifan ; Yang, Xianzhong ; Sun, Jingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c841-44453b087cacb1262ed2b717ccb0ad6f60332fd226f54fbc1070a362926a43013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Menglei</creatorcontrib><creatorcontrib>Sun, Zhongti</creatorcontrib><creatorcontrib>Ci, Haina</creatorcontrib><creatorcontrib>Shi, Zixiong</creatorcontrib><creatorcontrib>Shen, Lin</creatorcontrib><creatorcontrib>Wei, Chaohui</creatorcontrib><creatorcontrib>Ding, Yifan</creatorcontrib><creatorcontrib>Yang, Xianzhong</creatorcontrib><creatorcontrib>Sun, Jingyu</creatorcontrib><collection>CrossRef</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Menglei</au><au>Sun, Zhongti</au><au>Ci, Haina</au><au>Shi, Zixiong</au><au>Shen, Lin</au><au>Wei, Chaohui</au><au>Ding, Yifan</au><au>Yang, Xianzhong</au><au>Sun, Jingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying the Evolution of Selenium‐Vacancy‐Modulated MoSe 2 Precatalyst in Lithium–Sulfur Chemistry</atitle><jtitle>Angewandte Chemie</jtitle><date>2021-11-08</date><risdate>2021</risdate><volume>133</volume><issue>46</issue><spage>24763</spage><epage>24770</epage><pages>24763-24770</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Witnessing compositional evolution and identifying the catalytically active moiety of electrocatalysts is of paramount importance in Li–S chemistry. Nevertheless, this field remains elusive. We report the scalable salt‐templated synthesis of Se‐vacancy‐incorporated MoSe
2
architecture (SeVs‐MoSe
2
) and reveal the phase evolution of the defective precatalyst in working Li–S batteries. The interaction between lithium polysulfides and SeVs‐MoSe
2
is probed to induce the transformation from SeVs‐MoSe
2
to MoSeS. Furthermore, operando Raman spectroscopy and ex situ X‐ray diffraction measurements in combination with theoretical simulations verify that the effectual MoSeS catalyst could help promote conversion of Li
2
S
2
to Li
2
S, thereby boosting the capacity performance. The Li–S battery accordingly exhibits a satisfactory rate and cycling capability even with and elevated sulfur loading and lean electrolyte conditions (7.67 mg cm
−2
; 4.0 μL mg
−1
S
). This work elucidates the design strategies and catalytic mechanisms of efficient electrocatalysts bearing defects.</abstract><doi>10.1002/ange.202109291</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9812-3046</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2021-11, Vol.133 (46), p.24763-24770 |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_crossref_primary_10_1002_ange_202109291 |
source | Wiley |
title | Identifying the Evolution of Selenium‐Vacancy‐Modulated MoSe 2 Precatalyst in Lithium–Sulfur Chemistry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A10%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20the%20Evolution%20of%20Selenium%E2%80%90Vacancy%E2%80%90Modulated%20MoSe%202%20Precatalyst%20in%20Lithium%E2%80%93Sulfur%20Chemistry&rft.jtitle=Angewandte%20Chemie&rft.au=Wang,%20Menglei&rft.date=2021-11-08&rft.volume=133&rft.issue=46&rft.spage=24763&rft.epage=24770&rft.pages=24763-24770&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202109291&rft_dat=%3Ccrossref%3E10_1002_ange_202109291%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c841-44453b087cacb1262ed2b717ccb0ad6f60332fd226f54fbc1070a362926a43013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |