Loading…

Lattice Oxygen Activation through Deep Oxidation of Co 4 N by Jahn–Teller–Active Dopants for Improved Electrocatalytic Oxygen Evolution

Triggering the lattice oxygen oxidation mechanism is crucial for improving oxygen evolution reaction (OER) performance, because it could bypass the scaling relation limitation associated with the conventional adsorbate evolution mechanism through the direct formation of oxygen–oxygen bond. High‐vale...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2024-08, Vol.136 (33)
Main Authors: Han, Jingrui, Wang, Haibin, Wang, Yuting, Zhang, Hao, Li, Jun, Xia, Yujian, Zhou, Jieshu, Wang, Ziyun, Luo, Mingchuan, Wang, Yuhang, Wang, Ning, Cortés, Emiliano, Wang, Zumin, Vomiero, Alberto, Huang, Zhen‐Feng, Ren, Hangxing, Yuan, Xianming, Chen, Songhua, Feng, Donghui, Sun, Xuhui, Liu, Yongchang, Liang, Hongyan
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-crossref_primary_10_1002_ange_2024058393
container_end_page
container_issue 33
container_start_page
container_title Angewandte Chemie
container_volume 136
creator Han, Jingrui
Wang, Haibin
Wang, Yuting
Zhang, Hao
Li, Jun
Xia, Yujian
Zhou, Jieshu
Wang, Ziyun
Luo, Mingchuan
Wang, Yuhang
Wang, Ning
Cortés, Emiliano
Wang, Zumin
Vomiero, Alberto
Huang, Zhen‐Feng
Ren, Hangxing
Yuan, Xianming
Chen, Songhua
Feng, Donghui
Sun, Xuhui
Liu, Yongchang
Liang, Hongyan
description Triggering the lattice oxygen oxidation mechanism is crucial for improving oxygen evolution reaction (OER) performance, because it could bypass the scaling relation limitation associated with the conventional adsorbate evolution mechanism through the direct formation of oxygen–oxygen bond. High‐valence transition metal sites are favorable for activating the lattice oxygen, but the deep oxidation of pre‐catalysts suffers from a high thermodynamic barrier. Here, taking advantage of the Jahn–Teller (J–T) distortion induced structural instability, we incorporate high‐spin Mn 3+ ( ) dopant into Co 4 N. Mn dopants enable a surface structural transformation from Co 4 N to CoOOH, and finally to CoO 2 , as observed by various in situ spectroscopic investigations. Furthermore, the reconstructed surface on Mn‐doped Co 4 N triggers the lattice oxygen activation, as evidenced experimentally by pH‐dependent OER, tetramethylammonium cation adsorption and online electrochemical mass spectrometry measurements of 18 O‐labelled catalysts. In general, this work not only offers the introducing J–T effect approach to regulate the structural transition, but also provides an understanding about the influence of the catalyst's electronic configuration on determining the reaction route, which may inspire the design of more efficient catalysts with activated lattice oxygen.
doi_str_mv 10.1002/ange.202405839
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_ange_202405839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_ange_202405839</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_ange_2024058393</originalsourceid><addsrcrecordid>eNqVjztPxDAQhC0EEuHRUu8fSNg4DrmU6C6IQwia6yPj2zyQL45sX0Q6ekr-Ib-EhFdPNasZzY4-xi5ijGJEfim7miKOXGC6SPIDFsQpj8MkS7NDFiAKES64yI_ZiXPPiHjFszxgb_fS-1YRPL6MNXVwrXw7SN-aDnxjzb5uYEXUT3G7_bZNBUsDAh7gaYQ72XQfr-8b0prsdHzVCVaml513UBkL611vzUBbKDQpb42SXupx2vydLAaj9_PrM3ZUSe3o_EdPWXRTbJa3obLGOUtV2dt2J-1YxljOyOWMXP4hJ_8ufAIG0mMP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lattice Oxygen Activation through Deep Oxidation of Co 4 N by Jahn–Teller–Active Dopants for Improved Electrocatalytic Oxygen Evolution</title><source>Wiley</source><creator>Han, Jingrui ; Wang, Haibin ; Wang, Yuting ; Zhang, Hao ; Li, Jun ; Xia, Yujian ; Zhou, Jieshu ; Wang, Ziyun ; Luo, Mingchuan ; Wang, Yuhang ; Wang, Ning ; Cortés, Emiliano ; Wang, Zumin ; Vomiero, Alberto ; Huang, Zhen‐Feng ; Ren, Hangxing ; Yuan, Xianming ; Chen, Songhua ; Feng, Donghui ; Sun, Xuhui ; Liu, Yongchang ; Liang, Hongyan</creator><creatorcontrib>Han, Jingrui ; Wang, Haibin ; Wang, Yuting ; Zhang, Hao ; Li, Jun ; Xia, Yujian ; Zhou, Jieshu ; Wang, Ziyun ; Luo, Mingchuan ; Wang, Yuhang ; Wang, Ning ; Cortés, Emiliano ; Wang, Zumin ; Vomiero, Alberto ; Huang, Zhen‐Feng ; Ren, Hangxing ; Yuan, Xianming ; Chen, Songhua ; Feng, Donghui ; Sun, Xuhui ; Liu, Yongchang ; Liang, Hongyan</creatorcontrib><description>Triggering the lattice oxygen oxidation mechanism is crucial for improving oxygen evolution reaction (OER) performance, because it could bypass the scaling relation limitation associated with the conventional adsorbate evolution mechanism through the direct formation of oxygen–oxygen bond. High‐valence transition metal sites are favorable for activating the lattice oxygen, but the deep oxidation of pre‐catalysts suffers from a high thermodynamic barrier. Here, taking advantage of the Jahn–Teller (J–T) distortion induced structural instability, we incorporate high‐spin Mn 3+ ( ) dopant into Co 4 N. Mn dopants enable a surface structural transformation from Co 4 N to CoOOH, and finally to CoO 2 , as observed by various in situ spectroscopic investigations. Furthermore, the reconstructed surface on Mn‐doped Co 4 N triggers the lattice oxygen activation, as evidenced experimentally by pH‐dependent OER, tetramethylammonium cation adsorption and online electrochemical mass spectrometry measurements of 18 O‐labelled catalysts. In general, this work not only offers the introducing J–T effect approach to regulate the structural transition, but also provides an understanding about the influence of the catalyst's electronic configuration on determining the reaction route, which may inspire the design of more efficient catalysts with activated lattice oxygen.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202405839</identifier><language>eng</language><ispartof>Angewandte Chemie, 2024-08, Vol.136 (33)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_ange_2024058393</cites><orcidid>0000-0001-6623-6946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Han, Jingrui</creatorcontrib><creatorcontrib>Wang, Haibin</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Xia, Yujian</creatorcontrib><creatorcontrib>Zhou, Jieshu</creatorcontrib><creatorcontrib>Wang, Ziyun</creatorcontrib><creatorcontrib>Luo, Mingchuan</creatorcontrib><creatorcontrib>Wang, Yuhang</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Cortés, Emiliano</creatorcontrib><creatorcontrib>Wang, Zumin</creatorcontrib><creatorcontrib>Vomiero, Alberto</creatorcontrib><creatorcontrib>Huang, Zhen‐Feng</creatorcontrib><creatorcontrib>Ren, Hangxing</creatorcontrib><creatorcontrib>Yuan, Xianming</creatorcontrib><creatorcontrib>Chen, Songhua</creatorcontrib><creatorcontrib>Feng, Donghui</creatorcontrib><creatorcontrib>Sun, Xuhui</creatorcontrib><creatorcontrib>Liu, Yongchang</creatorcontrib><creatorcontrib>Liang, Hongyan</creatorcontrib><title>Lattice Oxygen Activation through Deep Oxidation of Co 4 N by Jahn–Teller–Active Dopants for Improved Electrocatalytic Oxygen Evolution</title><title>Angewandte Chemie</title><description>Triggering the lattice oxygen oxidation mechanism is crucial for improving oxygen evolution reaction (OER) performance, because it could bypass the scaling relation limitation associated with the conventional adsorbate evolution mechanism through the direct formation of oxygen–oxygen bond. High‐valence transition metal sites are favorable for activating the lattice oxygen, but the deep oxidation of pre‐catalysts suffers from a high thermodynamic barrier. Here, taking advantage of the Jahn–Teller (J–T) distortion induced structural instability, we incorporate high‐spin Mn 3+ ( ) dopant into Co 4 N. Mn dopants enable a surface structural transformation from Co 4 N to CoOOH, and finally to CoO 2 , as observed by various in situ spectroscopic investigations. Furthermore, the reconstructed surface on Mn‐doped Co 4 N triggers the lattice oxygen activation, as evidenced experimentally by pH‐dependent OER, tetramethylammonium cation adsorption and online electrochemical mass spectrometry measurements of 18 O‐labelled catalysts. In general, this work not only offers the introducing J–T effect approach to regulate the structural transition, but also provides an understanding about the influence of the catalyst's electronic configuration on determining the reaction route, which may inspire the design of more efficient catalysts with activated lattice oxygen.</description><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVjztPxDAQhC0EEuHRUu8fSNg4DrmU6C6IQwia6yPj2zyQL45sX0Q6ekr-Ib-EhFdPNasZzY4-xi5ijGJEfim7miKOXGC6SPIDFsQpj8MkS7NDFiAKES64yI_ZiXPPiHjFszxgb_fS-1YRPL6MNXVwrXw7SN-aDnxjzb5uYEXUT3G7_bZNBUsDAh7gaYQ72XQfr-8b0prsdHzVCVaml513UBkL611vzUBbKDQpb42SXupx2vydLAaj9_PrM3ZUSe3o_EdPWXRTbJa3obLGOUtV2dt2J-1YxljOyOWMXP4hJ_8ufAIG0mMP</recordid><startdate>20240812</startdate><enddate>20240812</enddate><creator>Han, Jingrui</creator><creator>Wang, Haibin</creator><creator>Wang, Yuting</creator><creator>Zhang, Hao</creator><creator>Li, Jun</creator><creator>Xia, Yujian</creator><creator>Zhou, Jieshu</creator><creator>Wang, Ziyun</creator><creator>Luo, Mingchuan</creator><creator>Wang, Yuhang</creator><creator>Wang, Ning</creator><creator>Cortés, Emiliano</creator><creator>Wang, Zumin</creator><creator>Vomiero, Alberto</creator><creator>Huang, Zhen‐Feng</creator><creator>Ren, Hangxing</creator><creator>Yuan, Xianming</creator><creator>Chen, Songhua</creator><creator>Feng, Donghui</creator><creator>Sun, Xuhui</creator><creator>Liu, Yongchang</creator><creator>Liang, Hongyan</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6623-6946</orcidid></search><sort><creationdate>20240812</creationdate><title>Lattice Oxygen Activation through Deep Oxidation of Co 4 N by Jahn–Teller–Active Dopants for Improved Electrocatalytic Oxygen Evolution</title><author>Han, Jingrui ; Wang, Haibin ; Wang, Yuting ; Zhang, Hao ; Li, Jun ; Xia, Yujian ; Zhou, Jieshu ; Wang, Ziyun ; Luo, Mingchuan ; Wang, Yuhang ; Wang, Ning ; Cortés, Emiliano ; Wang, Zumin ; Vomiero, Alberto ; Huang, Zhen‐Feng ; Ren, Hangxing ; Yuan, Xianming ; Chen, Songhua ; Feng, Donghui ; Sun, Xuhui ; Liu, Yongchang ; Liang, Hongyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_ange_2024058393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Jingrui</creatorcontrib><creatorcontrib>Wang, Haibin</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Xia, Yujian</creatorcontrib><creatorcontrib>Zhou, Jieshu</creatorcontrib><creatorcontrib>Wang, Ziyun</creatorcontrib><creatorcontrib>Luo, Mingchuan</creatorcontrib><creatorcontrib>Wang, Yuhang</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Cortés, Emiliano</creatorcontrib><creatorcontrib>Wang, Zumin</creatorcontrib><creatorcontrib>Vomiero, Alberto</creatorcontrib><creatorcontrib>Huang, Zhen‐Feng</creatorcontrib><creatorcontrib>Ren, Hangxing</creatorcontrib><creatorcontrib>Yuan, Xianming</creatorcontrib><creatorcontrib>Chen, Songhua</creatorcontrib><creatorcontrib>Feng, Donghui</creatorcontrib><creatorcontrib>Sun, Xuhui</creatorcontrib><creatorcontrib>Liu, Yongchang</creatorcontrib><creatorcontrib>Liang, Hongyan</creatorcontrib><collection>CrossRef</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Jingrui</au><au>Wang, Haibin</au><au>Wang, Yuting</au><au>Zhang, Hao</au><au>Li, Jun</au><au>Xia, Yujian</au><au>Zhou, Jieshu</au><au>Wang, Ziyun</au><au>Luo, Mingchuan</au><au>Wang, Yuhang</au><au>Wang, Ning</au><au>Cortés, Emiliano</au><au>Wang, Zumin</au><au>Vomiero, Alberto</au><au>Huang, Zhen‐Feng</au><au>Ren, Hangxing</au><au>Yuan, Xianming</au><au>Chen, Songhua</au><au>Feng, Donghui</au><au>Sun, Xuhui</au><au>Liu, Yongchang</au><au>Liang, Hongyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Oxygen Activation through Deep Oxidation of Co 4 N by Jahn–Teller–Active Dopants for Improved Electrocatalytic Oxygen Evolution</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-08-12</date><risdate>2024</risdate><volume>136</volume><issue>33</issue><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Triggering the lattice oxygen oxidation mechanism is crucial for improving oxygen evolution reaction (OER) performance, because it could bypass the scaling relation limitation associated with the conventional adsorbate evolution mechanism through the direct formation of oxygen–oxygen bond. High‐valence transition metal sites are favorable for activating the lattice oxygen, but the deep oxidation of pre‐catalysts suffers from a high thermodynamic barrier. Here, taking advantage of the Jahn–Teller (J–T) distortion induced structural instability, we incorporate high‐spin Mn 3+ ( ) dopant into Co 4 N. Mn dopants enable a surface structural transformation from Co 4 N to CoOOH, and finally to CoO 2 , as observed by various in situ spectroscopic investigations. Furthermore, the reconstructed surface on Mn‐doped Co 4 N triggers the lattice oxygen activation, as evidenced experimentally by pH‐dependent OER, tetramethylammonium cation adsorption and online electrochemical mass spectrometry measurements of 18 O‐labelled catalysts. In general, this work not only offers the introducing J–T effect approach to regulate the structural transition, but also provides an understanding about the influence of the catalyst's electronic configuration on determining the reaction route, which may inspire the design of more efficient catalysts with activated lattice oxygen.</abstract><doi>10.1002/ange.202405839</doi><orcidid>https://orcid.org/0000-0001-6623-6946</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2024-08, Vol.136 (33)
issn 0044-8249
1521-3757
language eng
recordid cdi_crossref_primary_10_1002_ange_202405839
source Wiley
title Lattice Oxygen Activation through Deep Oxidation of Co 4 N by Jahn–Teller–Active Dopants for Improved Electrocatalytic Oxygen Evolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Oxygen%20Activation%20through%20Deep%20Oxidation%20of%20Co%204%20N%20by%20Jahn%E2%80%93Teller%E2%80%93Active%20Dopants%20for%20Improved%20Electrocatalytic%20Oxygen%20Evolution&rft.jtitle=Angewandte%20Chemie&rft.au=Han,%20Jingrui&rft.date=2024-08-12&rft.volume=136&rft.issue=33&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202405839&rft_dat=%3Ccrossref%3E10_1002_ange_202405839%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-crossref_primary_10_1002_ange_2024058393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true