Loading…
Localized Oxidative Catalytic Reactions Triggered by Cavitation Bubbles Confinement on Copper Oxide Microstructured Particles
Efficient energy transfer management in catalytic processes is crucial for overcoming activation energy barriers while minimizing costs and CO 2 emissions. We exploit here a concept of CuO particle design with multiple gas‐stabilizing sites, engineered to function as cavitation nuclei and catalysts....
Saved in:
Published in: | Angewandte Chemie 2024-11 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c793-10b65cfe4c734ce3acde626e4ef054e24a527714d53b73116b97840c14a887263 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | |
creator | Mahendran, Valarmathi Trinh, Quang Thang Zhangyue, Xie Jonnalagadda, Umesh Gould, Tim Nguyen, Nam‐Trung Kwan, James Choksi, Tej S. Liu, Wen Valange, Sabine Jérôme, François Amaniampong, Prince Nana |
description | Efficient energy transfer management in catalytic processes is crucial for overcoming activation energy barriers while minimizing costs and CO 2 emissions. We exploit here a concept of CuO particle design with multiple gas‐stabilizing sites, engineered to function as cavitation nuclei and catalysts. This concept facilitates the selective and efficient acoustic energy transfer directly to the catalyst surface, avoiding the undesired dissipation of acoustic energy into the bulk solution while demonstrating superior cavitation properties at lower acoustic pressure amplitudes. Utilizing a chemical thermometric approach, we demonstrate that the local temperature on the surface of our CuO particles during cavitation bubble implosions can create an effective equivalent temperature of about 360 °C. This temperature effect facilitates the efficient catalysis of oxidative reactions using an organic pollutant probe molecule. Density functional theory (DFT) calculations were used to assess the decomposition of H 2 O 2 and of pollutant probe molecule on CuO (111). Our work represents a significant advance in sonocatalytic systems, promising efficient energy use in catalytic reactions. |
doi_str_mv | 10.1002/ange.202416543 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_ange_202416543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_ange_202416543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c793-10b65cfe4c734ce3acde626e4ef054e24a527714d53b73116b97840c14a887263</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFavnvcPpO73JkcNfkGlIr2HyWZSVtKk7G6LFfzvJiqeBmbe92F4CLnmbMEZEzfQb3AhmFDcaCVPyIxrwTNptT0lM8aUynKhinNyEeM7Y8wIW8zI13Jw0PlPbOjqwzeQ_AFpCQm6Y_KOviG45Ic-0nXwmw2GMVcfx8DBJ5gO9G5f1x1GWg5963vcYp_ouC6H3Q7DDxPpi3dhiCnsXdpPhFcII3xsXZKzFrqIV39zTtYP9-vyKVuuHp_L22XmbCEzzmqjXYvKWakcSnANGmFQYcu0QqFAC2u5arSsreTc1IXNFXNcQZ5bYeScLH6x0xsxYFvtgt9COFacVZO7anJX_buT30hXZMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Localized Oxidative Catalytic Reactions Triggered by Cavitation Bubbles Confinement on Copper Oxide Microstructured Particles</title><source>Wiley</source><creator>Mahendran, Valarmathi ; Trinh, Quang Thang ; Zhangyue, Xie ; Jonnalagadda, Umesh ; Gould, Tim ; Nguyen, Nam‐Trung ; Kwan, James ; Choksi, Tej S. ; Liu, Wen ; Valange, Sabine ; Jérôme, François ; Amaniampong, Prince Nana</creator><creatorcontrib>Mahendran, Valarmathi ; Trinh, Quang Thang ; Zhangyue, Xie ; Jonnalagadda, Umesh ; Gould, Tim ; Nguyen, Nam‐Trung ; Kwan, James ; Choksi, Tej S. ; Liu, Wen ; Valange, Sabine ; Jérôme, François ; Amaniampong, Prince Nana</creatorcontrib><description>Efficient energy transfer management in catalytic processes is crucial for overcoming activation energy barriers while minimizing costs and CO 2 emissions. We exploit here a concept of CuO particle design with multiple gas‐stabilizing sites, engineered to function as cavitation nuclei and catalysts. This concept facilitates the selective and efficient acoustic energy transfer directly to the catalyst surface, avoiding the undesired dissipation of acoustic energy into the bulk solution while demonstrating superior cavitation properties at lower acoustic pressure amplitudes. Utilizing a chemical thermometric approach, we demonstrate that the local temperature on the surface of our CuO particles during cavitation bubble implosions can create an effective equivalent temperature of about 360 °C. This temperature effect facilitates the efficient catalysis of oxidative reactions using an organic pollutant probe molecule. Density functional theory (DFT) calculations were used to assess the decomposition of H 2 O 2 and of pollutant probe molecule on CuO (111). Our work represents a significant advance in sonocatalytic systems, promising efficient energy use in catalytic reactions.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202416543</identifier><language>eng</language><ispartof>Angewandte Chemie, 2024-11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c793-10b65cfe4c734ce3acde626e4ef054e24a527714d53b73116b97840c14a887263</cites><orcidid>0000-0001-8666-5932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mahendran, Valarmathi</creatorcontrib><creatorcontrib>Trinh, Quang Thang</creatorcontrib><creatorcontrib>Zhangyue, Xie</creatorcontrib><creatorcontrib>Jonnalagadda, Umesh</creatorcontrib><creatorcontrib>Gould, Tim</creatorcontrib><creatorcontrib>Nguyen, Nam‐Trung</creatorcontrib><creatorcontrib>Kwan, James</creatorcontrib><creatorcontrib>Choksi, Tej S.</creatorcontrib><creatorcontrib>Liu, Wen</creatorcontrib><creatorcontrib>Valange, Sabine</creatorcontrib><creatorcontrib>Jérôme, François</creatorcontrib><creatorcontrib>Amaniampong, Prince Nana</creatorcontrib><title>Localized Oxidative Catalytic Reactions Triggered by Cavitation Bubbles Confinement on Copper Oxide Microstructured Particles</title><title>Angewandte Chemie</title><description>Efficient energy transfer management in catalytic processes is crucial for overcoming activation energy barriers while minimizing costs and CO 2 emissions. We exploit here a concept of CuO particle design with multiple gas‐stabilizing sites, engineered to function as cavitation nuclei and catalysts. This concept facilitates the selective and efficient acoustic energy transfer directly to the catalyst surface, avoiding the undesired dissipation of acoustic energy into the bulk solution while demonstrating superior cavitation properties at lower acoustic pressure amplitudes. Utilizing a chemical thermometric approach, we demonstrate that the local temperature on the surface of our CuO particles during cavitation bubble implosions can create an effective equivalent temperature of about 360 °C. This temperature effect facilitates the efficient catalysis of oxidative reactions using an organic pollutant probe molecule. Density functional theory (DFT) calculations were used to assess the decomposition of H 2 O 2 and of pollutant probe molecule on CuO (111). Our work represents a significant advance in sonocatalytic systems, promising efficient energy use in catalytic reactions.</description><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFavnvcPpO73JkcNfkGlIr2HyWZSVtKk7G6LFfzvJiqeBmbe92F4CLnmbMEZEzfQb3AhmFDcaCVPyIxrwTNptT0lM8aUynKhinNyEeM7Y8wIW8zI13Jw0PlPbOjqwzeQ_AFpCQm6Y_KOviG45Ic-0nXwmw2GMVcfx8DBJ5gO9G5f1x1GWg5963vcYp_ouC6H3Q7DDxPpi3dhiCnsXdpPhFcII3xsXZKzFrqIV39zTtYP9-vyKVuuHp_L22XmbCEzzmqjXYvKWakcSnANGmFQYcu0QqFAC2u5arSsreTc1IXNFXNcQZ5bYeScLH6x0xsxYFvtgt9COFacVZO7anJX_buT30hXZMo</recordid><startdate>20241116</startdate><enddate>20241116</enddate><creator>Mahendran, Valarmathi</creator><creator>Trinh, Quang Thang</creator><creator>Zhangyue, Xie</creator><creator>Jonnalagadda, Umesh</creator><creator>Gould, Tim</creator><creator>Nguyen, Nam‐Trung</creator><creator>Kwan, James</creator><creator>Choksi, Tej S.</creator><creator>Liu, Wen</creator><creator>Valange, Sabine</creator><creator>Jérôme, François</creator><creator>Amaniampong, Prince Nana</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8666-5932</orcidid></search><sort><creationdate>20241116</creationdate><title>Localized Oxidative Catalytic Reactions Triggered by Cavitation Bubbles Confinement on Copper Oxide Microstructured Particles</title><author>Mahendran, Valarmathi ; Trinh, Quang Thang ; Zhangyue, Xie ; Jonnalagadda, Umesh ; Gould, Tim ; Nguyen, Nam‐Trung ; Kwan, James ; Choksi, Tej S. ; Liu, Wen ; Valange, Sabine ; Jérôme, François ; Amaniampong, Prince Nana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c793-10b65cfe4c734ce3acde626e4ef054e24a527714d53b73116b97840c14a887263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahendran, Valarmathi</creatorcontrib><creatorcontrib>Trinh, Quang Thang</creatorcontrib><creatorcontrib>Zhangyue, Xie</creatorcontrib><creatorcontrib>Jonnalagadda, Umesh</creatorcontrib><creatorcontrib>Gould, Tim</creatorcontrib><creatorcontrib>Nguyen, Nam‐Trung</creatorcontrib><creatorcontrib>Kwan, James</creatorcontrib><creatorcontrib>Choksi, Tej S.</creatorcontrib><creatorcontrib>Liu, Wen</creatorcontrib><creatorcontrib>Valange, Sabine</creatorcontrib><creatorcontrib>Jérôme, François</creatorcontrib><creatorcontrib>Amaniampong, Prince Nana</creatorcontrib><collection>CrossRef</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahendran, Valarmathi</au><au>Trinh, Quang Thang</au><au>Zhangyue, Xie</au><au>Jonnalagadda, Umesh</au><au>Gould, Tim</au><au>Nguyen, Nam‐Trung</au><au>Kwan, James</au><au>Choksi, Tej S.</au><au>Liu, Wen</au><au>Valange, Sabine</au><au>Jérôme, François</au><au>Amaniampong, Prince Nana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localized Oxidative Catalytic Reactions Triggered by Cavitation Bubbles Confinement on Copper Oxide Microstructured Particles</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-11-16</date><risdate>2024</risdate><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Efficient energy transfer management in catalytic processes is crucial for overcoming activation energy barriers while minimizing costs and CO 2 emissions. We exploit here a concept of CuO particle design with multiple gas‐stabilizing sites, engineered to function as cavitation nuclei and catalysts. This concept facilitates the selective and efficient acoustic energy transfer directly to the catalyst surface, avoiding the undesired dissipation of acoustic energy into the bulk solution while demonstrating superior cavitation properties at lower acoustic pressure amplitudes. Utilizing a chemical thermometric approach, we demonstrate that the local temperature on the surface of our CuO particles during cavitation bubble implosions can create an effective equivalent temperature of about 360 °C. This temperature effect facilitates the efficient catalysis of oxidative reactions using an organic pollutant probe molecule. Density functional theory (DFT) calculations were used to assess the decomposition of H 2 O 2 and of pollutant probe molecule on CuO (111). Our work represents a significant advance in sonocatalytic systems, promising efficient energy use in catalytic reactions.</abstract><doi>10.1002/ange.202416543</doi><orcidid>https://orcid.org/0000-0001-8666-5932</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2024-11 |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_crossref_primary_10_1002_ange_202416543 |
source | Wiley |
title | Localized Oxidative Catalytic Reactions Triggered by Cavitation Bubbles Confinement on Copper Oxide Microstructured Particles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localized%20Oxidative%20Catalytic%20Reactions%20Triggered%20by%20Cavitation%20Bubbles%20Confinement%20on%20Copper%20Oxide%20Microstructured%20Particles&rft.jtitle=Angewandte%20Chemie&rft.au=Mahendran,%20Valarmathi&rft.date=2024-11-16&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202416543&rft_dat=%3Ccrossref%3E10_1002_ange_202416543%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c793-10b65cfe4c734ce3acde626e4ef054e24a527714d53b73116b97840c14a887263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |