Loading…

Localized Oxidative Catalytic Reactions Triggered by Cavitation Bubbles Confinement on Copper Oxide Microstructured Particles

Efficient energy transfer management in catalytic processes is crucial for overcoming activation energy barriers while minimizing costs and CO 2 emissions. We exploit here a concept of CuO particle design with multiple gas‐stabilizing sites, engineered to function as cavitation nuclei and catalysts....

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2024-11
Main Authors: Mahendran, Valarmathi, Trinh, Quang Thang, Zhangyue, Xie, Jonnalagadda, Umesh, Gould, Tim, Nguyen, Nam‐Trung, Kwan, James, Choksi, Tej S., Liu, Wen, Valange, Sabine, Jérôme, François, Amaniampong, Prince Nana
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c793-10b65cfe4c734ce3acde626e4ef054e24a527714d53b73116b97840c14a887263
container_end_page
container_issue
container_start_page
container_title Angewandte Chemie
container_volume
creator Mahendran, Valarmathi
Trinh, Quang Thang
Zhangyue, Xie
Jonnalagadda, Umesh
Gould, Tim
Nguyen, Nam‐Trung
Kwan, James
Choksi, Tej S.
Liu, Wen
Valange, Sabine
Jérôme, François
Amaniampong, Prince Nana
description Efficient energy transfer management in catalytic processes is crucial for overcoming activation energy barriers while minimizing costs and CO 2 emissions. We exploit here a concept of CuO particle design with multiple gas‐stabilizing sites, engineered to function as cavitation nuclei and catalysts. This concept facilitates the selective and efficient acoustic energy transfer directly to the catalyst surface, avoiding the undesired dissipation of acoustic energy into the bulk solution while demonstrating superior cavitation properties at lower acoustic pressure amplitudes. Utilizing a chemical thermometric approach, we demonstrate that the local temperature on the surface of our CuO particles during cavitation bubble implosions can create an effective equivalent temperature of about 360 °C. This temperature effect facilitates the efficient catalysis of oxidative reactions using an organic pollutant probe molecule. Density functional theory (DFT) calculations were used to assess the decomposition of H 2 O 2 and of pollutant probe molecule on CuO (111). Our work represents a significant advance in sonocatalytic systems, promising efficient energy use in catalytic reactions.
doi_str_mv 10.1002/ange.202416543
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_ange_202416543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_ange_202416543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c793-10b65cfe4c734ce3acde626e4ef054e24a527714d53b73116b97840c14a887263</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFavnvcPpO73JkcNfkGlIr2HyWZSVtKk7G6LFfzvJiqeBmbe92F4CLnmbMEZEzfQb3AhmFDcaCVPyIxrwTNptT0lM8aUynKhinNyEeM7Y8wIW8zI13Jw0PlPbOjqwzeQ_AFpCQm6Y_KOviG45Ic-0nXwmw2GMVcfx8DBJ5gO9G5f1x1GWg5963vcYp_ouC6H3Q7DDxPpi3dhiCnsXdpPhFcII3xsXZKzFrqIV39zTtYP9-vyKVuuHp_L22XmbCEzzmqjXYvKWakcSnANGmFQYcu0QqFAC2u5arSsreTc1IXNFXNcQZ5bYeScLH6x0xsxYFvtgt9COFacVZO7anJX_buT30hXZMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Localized Oxidative Catalytic Reactions Triggered by Cavitation Bubbles Confinement on Copper Oxide Microstructured Particles</title><source>Wiley</source><creator>Mahendran, Valarmathi ; Trinh, Quang Thang ; Zhangyue, Xie ; Jonnalagadda, Umesh ; Gould, Tim ; Nguyen, Nam‐Trung ; Kwan, James ; Choksi, Tej S. ; Liu, Wen ; Valange, Sabine ; Jérôme, François ; Amaniampong, Prince Nana</creator><creatorcontrib>Mahendran, Valarmathi ; Trinh, Quang Thang ; Zhangyue, Xie ; Jonnalagadda, Umesh ; Gould, Tim ; Nguyen, Nam‐Trung ; Kwan, James ; Choksi, Tej S. ; Liu, Wen ; Valange, Sabine ; Jérôme, François ; Amaniampong, Prince Nana</creatorcontrib><description>Efficient energy transfer management in catalytic processes is crucial for overcoming activation energy barriers while minimizing costs and CO 2 emissions. We exploit here a concept of CuO particle design with multiple gas‐stabilizing sites, engineered to function as cavitation nuclei and catalysts. This concept facilitates the selective and efficient acoustic energy transfer directly to the catalyst surface, avoiding the undesired dissipation of acoustic energy into the bulk solution while demonstrating superior cavitation properties at lower acoustic pressure amplitudes. Utilizing a chemical thermometric approach, we demonstrate that the local temperature on the surface of our CuO particles during cavitation bubble implosions can create an effective equivalent temperature of about 360 °C. This temperature effect facilitates the efficient catalysis of oxidative reactions using an organic pollutant probe molecule. Density functional theory (DFT) calculations were used to assess the decomposition of H 2 O 2 and of pollutant probe molecule on CuO (111). Our work represents a significant advance in sonocatalytic systems, promising efficient energy use in catalytic reactions.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202416543</identifier><language>eng</language><ispartof>Angewandte Chemie, 2024-11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c793-10b65cfe4c734ce3acde626e4ef054e24a527714d53b73116b97840c14a887263</cites><orcidid>0000-0001-8666-5932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mahendran, Valarmathi</creatorcontrib><creatorcontrib>Trinh, Quang Thang</creatorcontrib><creatorcontrib>Zhangyue, Xie</creatorcontrib><creatorcontrib>Jonnalagadda, Umesh</creatorcontrib><creatorcontrib>Gould, Tim</creatorcontrib><creatorcontrib>Nguyen, Nam‐Trung</creatorcontrib><creatorcontrib>Kwan, James</creatorcontrib><creatorcontrib>Choksi, Tej S.</creatorcontrib><creatorcontrib>Liu, Wen</creatorcontrib><creatorcontrib>Valange, Sabine</creatorcontrib><creatorcontrib>Jérôme, François</creatorcontrib><creatorcontrib>Amaniampong, Prince Nana</creatorcontrib><title>Localized Oxidative Catalytic Reactions Triggered by Cavitation Bubbles Confinement on Copper Oxide Microstructured Particles</title><title>Angewandte Chemie</title><description>Efficient energy transfer management in catalytic processes is crucial for overcoming activation energy barriers while minimizing costs and CO 2 emissions. We exploit here a concept of CuO particle design with multiple gas‐stabilizing sites, engineered to function as cavitation nuclei and catalysts. This concept facilitates the selective and efficient acoustic energy transfer directly to the catalyst surface, avoiding the undesired dissipation of acoustic energy into the bulk solution while demonstrating superior cavitation properties at lower acoustic pressure amplitudes. Utilizing a chemical thermometric approach, we demonstrate that the local temperature on the surface of our CuO particles during cavitation bubble implosions can create an effective equivalent temperature of about 360 °C. This temperature effect facilitates the efficient catalysis of oxidative reactions using an organic pollutant probe molecule. Density functional theory (DFT) calculations were used to assess the decomposition of H 2 O 2 and of pollutant probe molecule on CuO (111). Our work represents a significant advance in sonocatalytic systems, promising efficient energy use in catalytic reactions.</description><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFavnvcPpO73JkcNfkGlIr2HyWZSVtKk7G6LFfzvJiqeBmbe92F4CLnmbMEZEzfQb3AhmFDcaCVPyIxrwTNptT0lM8aUynKhinNyEeM7Y8wIW8zI13Jw0PlPbOjqwzeQ_AFpCQm6Y_KOviG45Ic-0nXwmw2GMVcfx8DBJ5gO9G5f1x1GWg5963vcYp_ouC6H3Q7DDxPpi3dhiCnsXdpPhFcII3xsXZKzFrqIV39zTtYP9-vyKVuuHp_L22XmbCEzzmqjXYvKWakcSnANGmFQYcu0QqFAC2u5arSsreTc1IXNFXNcQZ5bYeScLH6x0xsxYFvtgt9COFacVZO7anJX_buT30hXZMo</recordid><startdate>20241116</startdate><enddate>20241116</enddate><creator>Mahendran, Valarmathi</creator><creator>Trinh, Quang Thang</creator><creator>Zhangyue, Xie</creator><creator>Jonnalagadda, Umesh</creator><creator>Gould, Tim</creator><creator>Nguyen, Nam‐Trung</creator><creator>Kwan, James</creator><creator>Choksi, Tej S.</creator><creator>Liu, Wen</creator><creator>Valange, Sabine</creator><creator>Jérôme, François</creator><creator>Amaniampong, Prince Nana</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8666-5932</orcidid></search><sort><creationdate>20241116</creationdate><title>Localized Oxidative Catalytic Reactions Triggered by Cavitation Bubbles Confinement on Copper Oxide Microstructured Particles</title><author>Mahendran, Valarmathi ; Trinh, Quang Thang ; Zhangyue, Xie ; Jonnalagadda, Umesh ; Gould, Tim ; Nguyen, Nam‐Trung ; Kwan, James ; Choksi, Tej S. ; Liu, Wen ; Valange, Sabine ; Jérôme, François ; Amaniampong, Prince Nana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c793-10b65cfe4c734ce3acde626e4ef054e24a527714d53b73116b97840c14a887263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahendran, Valarmathi</creatorcontrib><creatorcontrib>Trinh, Quang Thang</creatorcontrib><creatorcontrib>Zhangyue, Xie</creatorcontrib><creatorcontrib>Jonnalagadda, Umesh</creatorcontrib><creatorcontrib>Gould, Tim</creatorcontrib><creatorcontrib>Nguyen, Nam‐Trung</creatorcontrib><creatorcontrib>Kwan, James</creatorcontrib><creatorcontrib>Choksi, Tej S.</creatorcontrib><creatorcontrib>Liu, Wen</creatorcontrib><creatorcontrib>Valange, Sabine</creatorcontrib><creatorcontrib>Jérôme, François</creatorcontrib><creatorcontrib>Amaniampong, Prince Nana</creatorcontrib><collection>CrossRef</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahendran, Valarmathi</au><au>Trinh, Quang Thang</au><au>Zhangyue, Xie</au><au>Jonnalagadda, Umesh</au><au>Gould, Tim</au><au>Nguyen, Nam‐Trung</au><au>Kwan, James</au><au>Choksi, Tej S.</au><au>Liu, Wen</au><au>Valange, Sabine</au><au>Jérôme, François</au><au>Amaniampong, Prince Nana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localized Oxidative Catalytic Reactions Triggered by Cavitation Bubbles Confinement on Copper Oxide Microstructured Particles</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-11-16</date><risdate>2024</risdate><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Efficient energy transfer management in catalytic processes is crucial for overcoming activation energy barriers while minimizing costs and CO 2 emissions. We exploit here a concept of CuO particle design with multiple gas‐stabilizing sites, engineered to function as cavitation nuclei and catalysts. This concept facilitates the selective and efficient acoustic energy transfer directly to the catalyst surface, avoiding the undesired dissipation of acoustic energy into the bulk solution while demonstrating superior cavitation properties at lower acoustic pressure amplitudes. Utilizing a chemical thermometric approach, we demonstrate that the local temperature on the surface of our CuO particles during cavitation bubble implosions can create an effective equivalent temperature of about 360 °C. This temperature effect facilitates the efficient catalysis of oxidative reactions using an organic pollutant probe molecule. Density functional theory (DFT) calculations were used to assess the decomposition of H 2 O 2 and of pollutant probe molecule on CuO (111). Our work represents a significant advance in sonocatalytic systems, promising efficient energy use in catalytic reactions.</abstract><doi>10.1002/ange.202416543</doi><orcidid>https://orcid.org/0000-0001-8666-5932</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2024-11
issn 0044-8249
1521-3757
language eng
recordid cdi_crossref_primary_10_1002_ange_202416543
source Wiley
title Localized Oxidative Catalytic Reactions Triggered by Cavitation Bubbles Confinement on Copper Oxide Microstructured Particles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localized%20Oxidative%20Catalytic%20Reactions%20Triggered%20by%20Cavitation%20Bubbles%20Confinement%20on%20Copper%20Oxide%20Microstructured%20Particles&rft.jtitle=Angewandte%20Chemie&rft.au=Mahendran,%20Valarmathi&rft.date=2024-11-16&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202416543&rft_dat=%3Ccrossref%3E10_1002_ange_202416543%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c793-10b65cfe4c734ce3acde626e4ef054e24a527714d53b73116b97840c14a887263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true