Loading…
Induced Fit of C 2 H 2 in a Flexible MOF Through Cooperative Action of Open Metal Sites
Porous materials that can undergo pore‐structure adjustment to better accommodate specific molecules are ideal for separation and purification. Here, we report a stable microporous metal‐organic framework, JNU‐1, featuring one‐dimensional diamond‐shaped channels with a high density of open metal sit...
Saved in:
Published in: | Angewandte Chemie International Edition 2019-06, Vol.58 (25), p.8515-8519 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Porous materials that can undergo pore‐structure adjustment to better accommodate specific molecules are ideal for separation and purification. Here, we report a stable microporous metal‐organic framework, JNU‐1, featuring one‐dimensional diamond‐shaped channels with a high density of open metal sites arranged on the surface for the cooperative binding of acetylene. Together with its framework flexibility and appropriate pore geometry, JNU‐1 exhibits an induced‐fit behavior for acetylene. The specific binding sites and continuous framework adaptation upon increased acetylene pressure are validated by molecular modeling and in situ X‐ray diffraction study. This unique induced‐fit behavior endows JNU‐1 with an unprecedented increase in the acetylene binding affinity (adsorption enthalpy: up to 47.6 kJ mol
−1
at ca. 2.0 mmol g
−1
loading). |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.201904160 |