Loading…

A Computation-Guided Design of Highly Defined and Dense Bimetallic Active Sites on a Two-Dimensional Conductive Metal-Organic Framework for Efficient H 2 O 2 Electrosynthesis

Electrochemical synthesis of hydrogen peroxide (H O ) via the two-electron oxygen reduction reaction (2e -ORR) provides an alternative method to the energy-intensive anthraquinone method. Metal macrocycles with precise coordination are widely used for 2e -ORR electrocatalysis, but they have to be co...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2024-11, Vol.63 (46), p.e202408500
Main Authors: Li, Zhenxin, Jia, Jingjing, Sang, Zhiyuan, Liu, Wei, Nie, Jiahuan, Yin, Lichang, Hou, Feng, Liu, Jiachen, Liang, Ji
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c626-a44cbafddd89016b3b1ce29f8abccf67acf8cdc71f8d13e1e97499d9dd6377103
container_end_page
container_issue 46
container_start_page e202408500
container_title Angewandte Chemie International Edition
container_volume 63
creator Li, Zhenxin
Jia, Jingjing
Sang, Zhiyuan
Liu, Wei
Nie, Jiahuan
Yin, Lichang
Hou, Feng
Liu, Jiachen
Liang, Ji
description Electrochemical synthesis of hydrogen peroxide (H O ) via the two-electron oxygen reduction reaction (2e -ORR) provides an alternative method to the energy-intensive anthraquinone method. Metal macrocycles with precise coordination are widely used for 2e -ORR electrocatalysis, but they have to be commonly loaded on conductive substrates, thus exposing a large number of 2e -ORR-inactive sites that result in poor H O production rate and efficiency. Herein, guided by first-principle predictions, a substrate-free and two-dimensional conductive metal-organic framework (Ni-TCPP(Co)), composed of CoN sites in porphine(Co) centers and Ni O nodes, is designed as a multi-site catalyst for H O electrosynthesis. The approperiate distance between the CoN and Ni O sites in Ni-TCPP(Co) weakens the electron transfer between them, thus ensuring their inherent activities and creating high-density active sites. Meanwhile, the intrinsic electronic conductivity and porosity of Ni-TCPP(Co) further facilitate rapid reaction kinetics. Therefore, outstanding 2e -ORR electrocatalytic performance has been achieved in both alkaline and neutral electrolytes (>90 %/85 % H O selectivity within 0-0.8 V vs. RHE and >18.2/18.0 mol g  h H O yield under alkaline/neutral conditions), with confirmed feasibility for water purification and disinfection applications. This strategy thus provides a new avenue for designing catalysts with precise coordination and high-density active sites, promoting high-efficiency electrosynthesis of H O and beyond.
doi_str_mv 10.1002/anie.202408500
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_anie_202408500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39115946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626-a44cbafddd89016b3b1ce29f8abccf67acf8cdc71f8d13e1e97499d9dd6377103</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqWwZYn8Ay52nIe9LH0iFXVB95HjR2tInCp2qfpTfCOOCixGM5q5d2Z0AHgkeEwwTp6Fs3qc4CTFLMP4CgxJlhBEi4JexzqlFBUsIwNw5_1H1DOG81swoJyQjKf5EHxP4LRtDscggm0dWh6t0grOtLc7B1sDV3a3r8-xYayLA-H6ofMavthGB1HXVsKJDPZLw3cbtIetgwJuTy2aRYHzcamo4wmnjhfVW-9Cm24XP5dw0YlGn9ruE5q2g3NjrLTaBbiCCdzEmNdahq71Zxf28Sd_D26MqL1--M0jsF3Mt9MVWm-Wr9PJGsk8yZFIU1kJo5RiHJO8ohWROuGGiUpKkxdCGiaVLIhhilBNNC9SzhVXKo_kCKYjML6slfG277QpD51tRHcuCS577mXPvfznHg1PF8PhWDVa_cv_QNMf6MCBiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Computation-Guided Design of Highly Defined and Dense Bimetallic Active Sites on a Two-Dimensional Conductive Metal-Organic Framework for Efficient H 2 O 2 Electrosynthesis</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Li, Zhenxin ; Jia, Jingjing ; Sang, Zhiyuan ; Liu, Wei ; Nie, Jiahuan ; Yin, Lichang ; Hou, Feng ; Liu, Jiachen ; Liang, Ji</creator><creatorcontrib>Li, Zhenxin ; Jia, Jingjing ; Sang, Zhiyuan ; Liu, Wei ; Nie, Jiahuan ; Yin, Lichang ; Hou, Feng ; Liu, Jiachen ; Liang, Ji</creatorcontrib><description>Electrochemical synthesis of hydrogen peroxide (H O ) via the two-electron oxygen reduction reaction (2e -ORR) provides an alternative method to the energy-intensive anthraquinone method. Metal macrocycles with precise coordination are widely used for 2e -ORR electrocatalysis, but they have to be commonly loaded on conductive substrates, thus exposing a large number of 2e -ORR-inactive sites that result in poor H O production rate and efficiency. Herein, guided by first-principle predictions, a substrate-free and two-dimensional conductive metal-organic framework (Ni-TCPP(Co)), composed of CoN sites in porphine(Co) centers and Ni O nodes, is designed as a multi-site catalyst for H O electrosynthesis. The approperiate distance between the CoN and Ni O sites in Ni-TCPP(Co) weakens the electron transfer between them, thus ensuring their inherent activities and creating high-density active sites. Meanwhile, the intrinsic electronic conductivity and porosity of Ni-TCPP(Co) further facilitate rapid reaction kinetics. Therefore, outstanding 2e -ORR electrocatalytic performance has been achieved in both alkaline and neutral electrolytes (&gt;90 %/85 % H O selectivity within 0-0.8 V vs. RHE and &gt;18.2/18.0 mol g  h H O yield under alkaline/neutral conditions), with confirmed feasibility for water purification and disinfection applications. This strategy thus provides a new avenue for designing catalysts with precise coordination and high-density active sites, promoting high-efficiency electrosynthesis of H O and beyond.</description><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202408500</identifier><identifier>PMID: 39115946</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Angewandte Chemie International Edition, 2024-11, Vol.63 (46), p.e202408500</ispartof><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c626-a44cbafddd89016b3b1ce29f8abccf67acf8cdc71f8d13e1e97499d9dd6377103</cites><orcidid>0000-0001-8217-8045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39115946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zhenxin</creatorcontrib><creatorcontrib>Jia, Jingjing</creatorcontrib><creatorcontrib>Sang, Zhiyuan</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Nie, Jiahuan</creatorcontrib><creatorcontrib>Yin, Lichang</creatorcontrib><creatorcontrib>Hou, Feng</creatorcontrib><creatorcontrib>Liu, Jiachen</creatorcontrib><creatorcontrib>Liang, Ji</creatorcontrib><title>A Computation-Guided Design of Highly Defined and Dense Bimetallic Active Sites on a Two-Dimensional Conductive Metal-Organic Framework for Efficient H 2 O 2 Electrosynthesis</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Electrochemical synthesis of hydrogen peroxide (H O ) via the two-electron oxygen reduction reaction (2e -ORR) provides an alternative method to the energy-intensive anthraquinone method. Metal macrocycles with precise coordination are widely used for 2e -ORR electrocatalysis, but they have to be commonly loaded on conductive substrates, thus exposing a large number of 2e -ORR-inactive sites that result in poor H O production rate and efficiency. Herein, guided by first-principle predictions, a substrate-free and two-dimensional conductive metal-organic framework (Ni-TCPP(Co)), composed of CoN sites in porphine(Co) centers and Ni O nodes, is designed as a multi-site catalyst for H O electrosynthesis. The approperiate distance between the CoN and Ni O sites in Ni-TCPP(Co) weakens the electron transfer between them, thus ensuring their inherent activities and creating high-density active sites. Meanwhile, the intrinsic electronic conductivity and porosity of Ni-TCPP(Co) further facilitate rapid reaction kinetics. Therefore, outstanding 2e -ORR electrocatalytic performance has been achieved in both alkaline and neutral electrolytes (&gt;90 %/85 % H O selectivity within 0-0.8 V vs. RHE and &gt;18.2/18.0 mol g  h H O yield under alkaline/neutral conditions), with confirmed feasibility for water purification and disinfection applications. This strategy thus provides a new avenue for designing catalysts with precise coordination and high-density active sites, promoting high-efficiency electrosynthesis of H O and beyond.</description><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EoqWwZYn8Ay52nIe9LH0iFXVB95HjR2tInCp2qfpTfCOOCixGM5q5d2Z0AHgkeEwwTp6Fs3qc4CTFLMP4CgxJlhBEi4JexzqlFBUsIwNw5_1H1DOG81swoJyQjKf5EHxP4LRtDscggm0dWh6t0grOtLc7B1sDV3a3r8-xYayLA-H6ofMavthGB1HXVsKJDPZLw3cbtIetgwJuTy2aRYHzcamo4wmnjhfVW-9Cm24XP5dw0YlGn9ruE5q2g3NjrLTaBbiCCdzEmNdahq71Zxf28Sd_D26MqL1--M0jsF3Mt9MVWm-Wr9PJGsk8yZFIU1kJo5RiHJO8ohWROuGGiUpKkxdCGiaVLIhhilBNNC9SzhVXKo_kCKYjML6slfG277QpD51tRHcuCS577mXPvfznHg1PF8PhWDVa_cv_QNMf6MCBiA</recordid><startdate>20241111</startdate><enddate>20241111</enddate><creator>Li, Zhenxin</creator><creator>Jia, Jingjing</creator><creator>Sang, Zhiyuan</creator><creator>Liu, Wei</creator><creator>Nie, Jiahuan</creator><creator>Yin, Lichang</creator><creator>Hou, Feng</creator><creator>Liu, Jiachen</creator><creator>Liang, Ji</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8217-8045</orcidid></search><sort><creationdate>20241111</creationdate><title>A Computation-Guided Design of Highly Defined and Dense Bimetallic Active Sites on a Two-Dimensional Conductive Metal-Organic Framework for Efficient H 2 O 2 Electrosynthesis</title><author>Li, Zhenxin ; Jia, Jingjing ; Sang, Zhiyuan ; Liu, Wei ; Nie, Jiahuan ; Yin, Lichang ; Hou, Feng ; Liu, Jiachen ; Liang, Ji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626-a44cbafddd89016b3b1ce29f8abccf67acf8cdc71f8d13e1e97499d9dd6377103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhenxin</creatorcontrib><creatorcontrib>Jia, Jingjing</creatorcontrib><creatorcontrib>Sang, Zhiyuan</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Nie, Jiahuan</creatorcontrib><creatorcontrib>Yin, Lichang</creatorcontrib><creatorcontrib>Hou, Feng</creatorcontrib><creatorcontrib>Liu, Jiachen</creatorcontrib><creatorcontrib>Liang, Ji</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhenxin</au><au>Jia, Jingjing</au><au>Sang, Zhiyuan</au><au>Liu, Wei</au><au>Nie, Jiahuan</au><au>Yin, Lichang</au><au>Hou, Feng</au><au>Liu, Jiachen</au><au>Liang, Ji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Computation-Guided Design of Highly Defined and Dense Bimetallic Active Sites on a Two-Dimensional Conductive Metal-Organic Framework for Efficient H 2 O 2 Electrosynthesis</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-11-11</date><risdate>2024</risdate><volume>63</volume><issue>46</issue><spage>e202408500</spage><pages>e202408500-</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Electrochemical synthesis of hydrogen peroxide (H O ) via the two-electron oxygen reduction reaction (2e -ORR) provides an alternative method to the energy-intensive anthraquinone method. Metal macrocycles with precise coordination are widely used for 2e -ORR electrocatalysis, but they have to be commonly loaded on conductive substrates, thus exposing a large number of 2e -ORR-inactive sites that result in poor H O production rate and efficiency. Herein, guided by first-principle predictions, a substrate-free and two-dimensional conductive metal-organic framework (Ni-TCPP(Co)), composed of CoN sites in porphine(Co) centers and Ni O nodes, is designed as a multi-site catalyst for H O electrosynthesis. The approperiate distance between the CoN and Ni O sites in Ni-TCPP(Co) weakens the electron transfer between them, thus ensuring their inherent activities and creating high-density active sites. Meanwhile, the intrinsic electronic conductivity and porosity of Ni-TCPP(Co) further facilitate rapid reaction kinetics. Therefore, outstanding 2e -ORR electrocatalytic performance has been achieved in both alkaline and neutral electrolytes (&gt;90 %/85 % H O selectivity within 0-0.8 V vs. RHE and &gt;18.2/18.0 mol g  h H O yield under alkaline/neutral conditions), with confirmed feasibility for water purification and disinfection applications. This strategy thus provides a new avenue for designing catalysts with precise coordination and high-density active sites, promoting high-efficiency electrosynthesis of H O and beyond.</abstract><cop>Germany</cop><pmid>39115946</pmid><doi>10.1002/anie.202408500</doi><orcidid>https://orcid.org/0000-0001-8217-8045</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-11, Vol.63 (46), p.e202408500
issn 1433-7851
1521-3773
language eng
recordid cdi_crossref_primary_10_1002_anie_202408500
source Wiley-Blackwell Read & Publish Collection
title A Computation-Guided Design of Highly Defined and Dense Bimetallic Active Sites on a Two-Dimensional Conductive Metal-Organic Framework for Efficient H 2 O 2 Electrosynthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Computation-Guided%20Design%20of%20Highly%20Defined%20and%20Dense%20Bimetallic%20Active%20Sites%20on%20a%20Two-Dimensional%20Conductive%20Metal-Organic%20Framework%20for%20Efficient%20H%202%20O%202%20Electrosynthesis&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Li,%20Zhenxin&rft.date=2024-11-11&rft.volume=63&rft.issue=46&rft.spage=e202408500&rft.pages=e202408500-&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202408500&rft_dat=%3Cpubmed_cross%3E39115946%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c626-a44cbafddd89016b3b1ce29f8abccf67acf8cdc71f8d13e1e97499d9dd6377103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/39115946&rfr_iscdi=true