Loading…

Metal-stabilized rare tautomers: N4 metalated cytosine (M = Li+, Na+, K+, Rb+ and Cs+), theoretical views

Ab initio calculations indicate that metalation of the exocyclic amino group of cytosine by the elements of Group IA (Li, Na, K, Rb and Cs) induces protonation of a nucleobase ring nitrogen atom, and hence causes a proton shift from an exocyclic to an endocyclic nitrogen atom. Thus, this metal‐assis...

Full description

Saved in:
Bibliographic Details
Published in:Applied organometallic chemistry 2003-08, Vol.17 (8), p.635-640
Main Authors: Monajjemi, Majid, Ghiasi, Reza, Sadjadi, M. A. Seyed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ab initio calculations indicate that metalation of the exocyclic amino group of cytosine by the elements of Group IA (Li, Na, K, Rb and Cs) induces protonation of a nucleobase ring nitrogen atom, and hence causes a proton shift from an exocyclic to an endocyclic nitrogen atom. Thus, this metal‐assisted process leads to the generation of rare nucleobase tautomers. The calculations suggest that this kind of metalation increases the protonation energies of the aromatic ring of the nucleobase. The present study reports the quantum chemistry analysis of the metal‐assisted tautomerization. The calculations clearly demonstrate that metalation of the exocyclic amino group of the nucleobase significantly increases the protonation energy of the aromatic rings of the nucleobase. Also, absolute anisotropy shift, molecular orbital and natural bond orbital calculations are compatible with these results. Copyright © 2003 John Wiley & Sons, Ltd.
ISSN:0268-2605
1099-0739
DOI:10.1002/aoc.469