Loading…

Nanostructured LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a cathode material for high‐power lithium‐ion battery

Nanocrystalline LiNi 1/3 Co 1/3 Mn 1/3 O 2 was synthesized by a sol–gel method. Thermal history of the gel was analyzed by thermogravimetric (TG) analysis and differential thermal analysis (DTA). Powders X‐ray diffraction (XRD) proved the formation of layered α‐NaFeO 2 hexagonal lattice. Scanning el...

Full description

Saved in:
Bibliographic Details
Published in:Asia-Pacific journal of chemical engineering 2008-09, Vol.3 (5), p.527-530
Main Authors: Li, Xinlu, Shi, Xiujuan, Huang, Zheng‐Hong, Kang, Feiyu, Shen, Wanci
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c701-291f2111b665700c109d5a7250119082819f0c38bf51f94fccff76279f445e083
cites cdi_FETCH-LOGICAL-c701-291f2111b665700c109d5a7250119082819f0c38bf51f94fccff76279f445e083
container_end_page 530
container_issue 5
container_start_page 527
container_title Asia-Pacific journal of chemical engineering
container_volume 3
creator Li, Xinlu
Shi, Xiujuan
Huang, Zheng‐Hong
Kang, Feiyu
Shen, Wanci
description Nanocrystalline LiNi 1/3 Co 1/3 Mn 1/3 O 2 was synthesized by a sol–gel method. Thermal history of the gel was analyzed by thermogravimetric (TG) analysis and differential thermal analysis (DTA). Powders X‐ray diffraction (XRD) proved the formation of layered α‐NaFeO 2 hexagonal lattice. Scanning electron microscopy (SEM) showed that original particles were of the size range of 200–300 nm. The discharge capacity was 183 mAh/g in the first cycle with 87.5% capacity retention in 30 cycles at C/10 rate in 3.0–4.5 V potential range. Copyright © 2008 Curtin University of Technology and John Wiley & Sons, Ltd.
doi_str_mv 10.1002/apj.171
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_apj_171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_apj_171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c701-291f2111b665700c109d5a7250119082819f0c38bf51f94fccff76279f445e083</originalsourceid><addsrcrecordid>eNo9kEtOwzAURS0EEqUgtuAZo7Tv-ZPEQ1Txk0I76TxyHJu4auvKToQ6YwmskZUQCmJ07pWu7uAQcoswQwA214fNDAs8IxNUnGUMBT__z1xekquUNgBSsFxMiFvqfUh9HEw_RNvSyi89xTmni3DC6_6EFWVUJ6qp0X0XWkt3urfR6y11IdLOv3VfH5-H8G4j3fq-88Nu7D7saaP7cXi8JhdOb5O9-eOUrB8f1ovnrFo9vSzuq8wUgBlT6BgiNnkuCwCDoFqpCyYBUUHJSlQODC8bJ9Ep4YxxrshZoZwQ0kLJp-Tu99bEkFK0rj5Ev9PxWCPUP3bq0U492uHfOh9WGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanostructured LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a cathode material for high‐power lithium‐ion battery</title><source>Wiley</source><creator>Li, Xinlu ; Shi, Xiujuan ; Huang, Zheng‐Hong ; Kang, Feiyu ; Shen, Wanci</creator><creatorcontrib>Li, Xinlu ; Shi, Xiujuan ; Huang, Zheng‐Hong ; Kang, Feiyu ; Shen, Wanci</creatorcontrib><description>Nanocrystalline LiNi 1/3 Co 1/3 Mn 1/3 O 2 was synthesized by a sol–gel method. Thermal history of the gel was analyzed by thermogravimetric (TG) analysis and differential thermal analysis (DTA). Powders X‐ray diffraction (XRD) proved the formation of layered α‐NaFeO 2 hexagonal lattice. Scanning electron microscopy (SEM) showed that original particles were of the size range of 200–300 nm. The discharge capacity was 183 mAh/g in the first cycle with 87.5% capacity retention in 30 cycles at C/10 rate in 3.0–4.5 V potential range. Copyright © 2008 Curtin University of Technology and John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1932-2135</identifier><identifier>EISSN: 1932-2143</identifier><identifier>DOI: 10.1002/apj.171</identifier><language>eng</language><ispartof>Asia-Pacific journal of chemical engineering, 2008-09, Vol.3 (5), p.527-530</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c701-291f2111b665700c109d5a7250119082819f0c38bf51f94fccff76279f445e083</citedby><cites>FETCH-LOGICAL-c701-291f2111b665700c109d5a7250119082819f0c38bf51f94fccff76279f445e083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Li, Xinlu</creatorcontrib><creatorcontrib>Shi, Xiujuan</creatorcontrib><creatorcontrib>Huang, Zheng‐Hong</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><creatorcontrib>Shen, Wanci</creatorcontrib><title>Nanostructured LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a cathode material for high‐power lithium‐ion battery</title><title>Asia-Pacific journal of chemical engineering</title><description>Nanocrystalline LiNi 1/3 Co 1/3 Mn 1/3 O 2 was synthesized by a sol–gel method. Thermal history of the gel was analyzed by thermogravimetric (TG) analysis and differential thermal analysis (DTA). Powders X‐ray diffraction (XRD) proved the formation of layered α‐NaFeO 2 hexagonal lattice. Scanning electron microscopy (SEM) showed that original particles were of the size range of 200–300 nm. The discharge capacity was 183 mAh/g in the first cycle with 87.5% capacity retention in 30 cycles at C/10 rate in 3.0–4.5 V potential range. Copyright © 2008 Curtin University of Technology and John Wiley &amp; Sons, Ltd.</description><issn>1932-2135</issn><issn>1932-2143</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kEtOwzAURS0EEqUgtuAZo7Tv-ZPEQ1Txk0I76TxyHJu4auvKToQ6YwmskZUQCmJ07pWu7uAQcoswQwA214fNDAs8IxNUnGUMBT__z1xekquUNgBSsFxMiFvqfUh9HEw_RNvSyi89xTmni3DC6_6EFWVUJ6qp0X0XWkt3urfR6y11IdLOv3VfH5-H8G4j3fq-88Nu7D7saaP7cXi8JhdOb5O9-eOUrB8f1ovnrFo9vSzuq8wUgBlT6BgiNnkuCwCDoFqpCyYBUUHJSlQODC8bJ9Ep4YxxrshZoZwQ0kLJp-Tu99bEkFK0rj5Ev9PxWCPUP3bq0U492uHfOh9WGA</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Li, Xinlu</creator><creator>Shi, Xiujuan</creator><creator>Huang, Zheng‐Hong</creator><creator>Kang, Feiyu</creator><creator>Shen, Wanci</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200809</creationdate><title>Nanostructured LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a cathode material for high‐power lithium‐ion battery</title><author>Li, Xinlu ; Shi, Xiujuan ; Huang, Zheng‐Hong ; Kang, Feiyu ; Shen, Wanci</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c701-291f2111b665700c109d5a7250119082819f0c38bf51f94fccff76279f445e083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xinlu</creatorcontrib><creatorcontrib>Shi, Xiujuan</creatorcontrib><creatorcontrib>Huang, Zheng‐Hong</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><creatorcontrib>Shen, Wanci</creatorcontrib><collection>CrossRef</collection><jtitle>Asia-Pacific journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xinlu</au><au>Shi, Xiujuan</au><au>Huang, Zheng‐Hong</au><au>Kang, Feiyu</au><au>Shen, Wanci</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructured LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a cathode material for high‐power lithium‐ion battery</atitle><jtitle>Asia-Pacific journal of chemical engineering</jtitle><date>2008-09</date><risdate>2008</risdate><volume>3</volume><issue>5</issue><spage>527</spage><epage>530</epage><pages>527-530</pages><issn>1932-2135</issn><eissn>1932-2143</eissn><abstract>Nanocrystalline LiNi 1/3 Co 1/3 Mn 1/3 O 2 was synthesized by a sol–gel method. Thermal history of the gel was analyzed by thermogravimetric (TG) analysis and differential thermal analysis (DTA). Powders X‐ray diffraction (XRD) proved the formation of layered α‐NaFeO 2 hexagonal lattice. Scanning electron microscopy (SEM) showed that original particles were of the size range of 200–300 nm. The discharge capacity was 183 mAh/g in the first cycle with 87.5% capacity retention in 30 cycles at C/10 rate in 3.0–4.5 V potential range. Copyright © 2008 Curtin University of Technology and John Wiley &amp; Sons, Ltd.</abstract><doi>10.1002/apj.171</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-2135
ispartof Asia-Pacific journal of chemical engineering, 2008-09, Vol.3 (5), p.527-530
issn 1932-2135
1932-2143
language eng
recordid cdi_crossref_primary_10_1002_apj_171
source Wiley
title Nanostructured LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a cathode material for high‐power lithium‐ion battery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A02%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructured%20LiNi%201/3%20Co%201/3%20Mn%201/3%20O%202%20as%20a%20cathode%20material%20for%20high%E2%80%90power%20lithium%E2%80%90ion%20battery&rft.jtitle=Asia-Pacific%20journal%20of%20chemical%20engineering&rft.au=Li,%20Xinlu&rft.date=2008-09&rft.volume=3&rft.issue=5&rft.spage=527&rft.epage=530&rft.pages=527-530&rft.issn=1932-2135&rft.eissn=1932-2143&rft_id=info:doi/10.1002/apj.171&rft_dat=%3Ccrossref%3E10_1002_apj_171%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c701-291f2111b665700c109d5a7250119082819f0c38bf51f94fccff76279f445e083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true