Loading…
Ionically conductive polymer gel electrolytes consisting of crosslinked methacrylonitrile and organic electrolyte
To develop a highly ion‐conductive polymer electrolyte, we copolymerized methacrylonitrile (MAN) with ethylene glycol dimethacrylate (EGDMA) in propylene carbonate that contained tetraethylammonium tetrafluoroborate (TEATFB), changing the TEATFB concentration and the MAN/EGDMA molar ratio. We charac...
Saved in:
Published in: | Journal of applied polymer science 2002-03, Vol.83 (12), p.2655-2659 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To develop a highly ion‐conductive polymer electrolyte, we copolymerized methacrylonitrile (MAN) with ethylene glycol dimethacrylate (EGDMA) in propylene carbonate that contained tetraethylammonium tetrafluoroborate (TEATFB), changing the TEATFB concentration and the MAN/EGDMA molar ratio. We characterized the obtained polymer gel electrolytes with complex impedance analysis and cyclic voltammetry, intending to apply them to electric double‐layer capacitors. The ionic conductivities of the polymer gel electrolytes were dependent on the TEATFB concentration, the temperature, and particularly the crosslinking degree. The polymer gel electrolytes in this system exhibited high room‐temperature conductivities (>10−3 S/cm). Furthermore, these polymer electrolytes showed good electrochemical stability windows ranging from −4.0 to +4.0 V versus Ag. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2655–2659, 2002 |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.10231 |