Loading…
Properties of n-butyl methacrylate copolymer latex films derived from crosslinked latex particles
Films obtained from copolymer latexes of n‐butyl methacrylate (BMA) with a series of crosslinking monomers [i.e., a macromonomer crosslinker (Mac), ethylene glycol dimethacrylate (EGDMA), and aliphatic urethane acrylate] exhibited differences in their tensile properties and swelling behaviors. For P...
Saved in:
Published in: | Journal of applied polymer science 2003-04, Vol.88 (1), p.42-49 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Films obtained from copolymer latexes of n‐butyl methacrylate (BMA) with a series of crosslinking monomers [i.e., a macromonomer crosslinker (Mac), ethylene glycol dimethacrylate (EGDMA), and aliphatic urethane acrylate] exhibited differences in their tensile properties and swelling behaviors. For P(BMA‐co‐EGDMA) copolymer, a dependence on the initiator type was obtained. It is postulated that the network microstructures for the various copolymers evolved as the result of the copolymerization reactions between the monomer pairs during the synthesis in the miniemulsion free‐radical copolymerization. These network microstructures are, therefore, hypothesized to influence the mechanical properties of the resultant films. Copolymers prepared with Mac were tough in comparison with copolymers made with EGDMA. The presence of longer linear or lightly crosslinked poly(n‐butyl methacrylate) (PBMA) chains and the looseness of the crosslinked network structures in the PBMA‐co‐Mac copolymers appear to be the factors responsible for the differences. All of the copolymer films disintegrated into swollen individual microgels when they were immersed in tetrahydrofuran. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 42–49, 2003 |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.11684 |