Loading…
In vitro degradation and cytotoxicity of alkyl 2-cyanoacrylate polymers for application to tissue adhesives
To investigate the in vitro degradability and cytotoxicity of long alkyl cyanoacrylate polymers [polycyanoacrylates (PCAs)], we synthesized five kinds of alkyl cyanoacrylates (ethyl, 2‐octyl, n‐octyl, ethylhexyl, and ethyl cyanoacryloyllactate). In vitro degradation in buffer solutions and cell cult...
Saved in:
Published in: | Journal of applied polymer science 2003-09, Vol.89 (12), p.3272-3278 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3352-814d7d1673a02502ff0d68a2ee6f449168ec105942a7980459e03cf15ce5d5f93 |
---|---|
cites | cdi_FETCH-LOGICAL-c3352-814d7d1673a02502ff0d68a2ee6f449168ec105942a7980459e03cf15ce5d5f93 |
container_end_page | 3278 |
container_issue | 12 |
container_start_page | 3272 |
container_title | Journal of applied polymer science |
container_volume | 89 |
creator | Hee Park, Dae Bum Kim, Sung Ahn, Kwang-Duk Yong Kim, Eui Jun Kim, Young Keun Han, Dong |
description | To investigate the in vitro degradability and cytotoxicity of long alkyl cyanoacrylate polymers [polycyanoacrylates (PCAs)], we synthesized five kinds of alkyl cyanoacrylates (ethyl, 2‐octyl, n‐octyl, ethylhexyl, and ethyl cyanoacryloyllactate). In vitro degradation in buffer solutions and cell cultures for cytotoxicity were performed with PCAs prepared by various polymerization methods. Lower alkyl homologues such as ethyl cyanoacrylate revealed a higher tissue toxicity than higher alkyl homologues. The amounts of formaldehyde released from various PCAs were not proportional to the rate of degradation. The apparent form of the cyanoacrylate polymers greatly affected the degradation rate, as the powdery polymers degraded much more quickly than the films. A new biodegradable polymer, prepared from ethyl 2‐cyanoacryloyllactate, degraded more quickly than the others. The amount of formaldehyde released from the polymer degradation was high because it degraded rapidly. It was observed from cell culture experiments that the viability of the cells was higher with a lower release of formaldehyde because the alkyl side groups were bigger. Therefore, octyl cyanoacrylate polymers demonstrated lower amounts of formaldehyde by degradation and higher cell viability, and these monomers may be desirable for use as tissue adhesives. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3272–3278, 2003 |
doi_str_mv | 10.1002/app.12452 |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_app_12452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>APP12452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3352-814d7d1673a02502ff0d68a2ee6f449168ec105942a7980459e03cf15ce5d5f93</originalsourceid><addsrcrecordid>eNp1kLlOxDAQhi0EEstCwRu4oaAI2I6dxCXngoQgQiAkGmvk2GA2xJFtjrw9gXBUVFPM939zILRNyR4lhO1D3-9RxgVbQTNKZJnxglWraDb2aFZJKdbRRoxPhFAqSDFDy_MOv7oUPG7MQ4AGkvMdhq7Bekg--XenXRqwtxja5dBilukBOg86DC0kg3vfDs8mRGx9wOPw1ulJkTxOLsYXg6F5NNG9mriJ1iy00Wx91zm6PT25OTrLLq4W50cHF5nOc8GyivKmbGhR5kCYIMxa0hQVMGMKy7mkRWU0JUJyBqWsCBfSkFxbKrQRjbAyn6PdyauDjzEYq_rgniEMihL1-SU1Lqq-vjSyOxPbQ9TQ2gCddvEvwKUkktOR25-4N9ea4X-hOqjrH3M2JVxM5v03AWGpxtNKoe4uF-r4kNf1_TVVJP8AtB-Gjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In vitro degradation and cytotoxicity of alkyl 2-cyanoacrylate polymers for application to tissue adhesives</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Hee Park, Dae ; Bum Kim, Sung ; Ahn, Kwang-Duk ; Yong Kim, Eui ; Jun Kim, Young ; Keun Han, Dong</creator><creatorcontrib>Hee Park, Dae ; Bum Kim, Sung ; Ahn, Kwang-Duk ; Yong Kim, Eui ; Jun Kim, Young ; Keun Han, Dong</creatorcontrib><description>To investigate the in vitro degradability and cytotoxicity of long alkyl cyanoacrylate polymers [polycyanoacrylates (PCAs)], we synthesized five kinds of alkyl cyanoacrylates (ethyl, 2‐octyl, n‐octyl, ethylhexyl, and ethyl cyanoacryloyllactate). In vitro degradation in buffer solutions and cell cultures for cytotoxicity were performed with PCAs prepared by various polymerization methods. Lower alkyl homologues such as ethyl cyanoacrylate revealed a higher tissue toxicity than higher alkyl homologues. The amounts of formaldehyde released from various PCAs were not proportional to the rate of degradation. The apparent form of the cyanoacrylate polymers greatly affected the degradation rate, as the powdery polymers degraded much more quickly than the films. A new biodegradable polymer, prepared from ethyl 2‐cyanoacryloyllactate, degraded more quickly than the others. The amount of formaldehyde released from the polymer degradation was high because it degraded rapidly. It was observed from cell culture experiments that the viability of the cells was higher with a lower release of formaldehyde because the alkyl side groups were bigger. Therefore, octyl cyanoacrylate polymers demonstrated lower amounts of formaldehyde by degradation and higher cell viability, and these monomers may be desirable for use as tissue adhesives. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3272–3278, 2003</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.12452</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>adhesives ; Application fields ; Applied sciences ; Biological and medical sciences ; biomaterials ; degradation ; Exact sciences and technology ; Medical sciences ; Polymer industry, paints, wood ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Technology of polymers ; Technology. Biomaterials. Equipments. Material. Instrumentation</subject><ispartof>Journal of applied polymer science, 2003-09, Vol.89 (12), p.3272-3278</ispartof><rights>Copyright © 2003 Wiley Periodicals, Inc.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3352-814d7d1673a02502ff0d68a2ee6f449168ec105942a7980459e03cf15ce5d5f93</citedby><cites>FETCH-LOGICAL-c3352-814d7d1673a02502ff0d68a2ee6f449168ec105942a7980459e03cf15ce5d5f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14990941$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hee Park, Dae</creatorcontrib><creatorcontrib>Bum Kim, Sung</creatorcontrib><creatorcontrib>Ahn, Kwang-Duk</creatorcontrib><creatorcontrib>Yong Kim, Eui</creatorcontrib><creatorcontrib>Jun Kim, Young</creatorcontrib><creatorcontrib>Keun Han, Dong</creatorcontrib><title>In vitro degradation and cytotoxicity of alkyl 2-cyanoacrylate polymers for application to tissue adhesives</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>To investigate the in vitro degradability and cytotoxicity of long alkyl cyanoacrylate polymers [polycyanoacrylates (PCAs)], we synthesized five kinds of alkyl cyanoacrylates (ethyl, 2‐octyl, n‐octyl, ethylhexyl, and ethyl cyanoacryloyllactate). In vitro degradation in buffer solutions and cell cultures for cytotoxicity were performed with PCAs prepared by various polymerization methods. Lower alkyl homologues such as ethyl cyanoacrylate revealed a higher tissue toxicity than higher alkyl homologues. The amounts of formaldehyde released from various PCAs were not proportional to the rate of degradation. The apparent form of the cyanoacrylate polymers greatly affected the degradation rate, as the powdery polymers degraded much more quickly than the films. A new biodegradable polymer, prepared from ethyl 2‐cyanoacryloyllactate, degraded more quickly than the others. The amount of formaldehyde released from the polymer degradation was high because it degraded rapidly. It was observed from cell culture experiments that the viability of the cells was higher with a lower release of formaldehyde because the alkyl side groups were bigger. Therefore, octyl cyanoacrylate polymers demonstrated lower amounts of formaldehyde by degradation and higher cell viability, and these monomers may be desirable for use as tissue adhesives. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3272–3278, 2003</description><subject>adhesives</subject><subject>Application fields</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>biomaterials</subject><subject>degradation</subject><subject>Exact sciences and technology</subject><subject>Medical sciences</subject><subject>Polymer industry, paints, wood</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Technology of polymers</subject><subject>Technology. Biomaterials. Equipments. Material. Instrumentation</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1kLlOxDAQhi0EEstCwRu4oaAI2I6dxCXngoQgQiAkGmvk2GA2xJFtjrw9gXBUVFPM939zILRNyR4lhO1D3-9RxgVbQTNKZJnxglWraDb2aFZJKdbRRoxPhFAqSDFDy_MOv7oUPG7MQ4AGkvMdhq7Bekg--XenXRqwtxja5dBilukBOg86DC0kg3vfDs8mRGx9wOPw1ulJkTxOLsYXg6F5NNG9mriJ1iy00Wx91zm6PT25OTrLLq4W50cHF5nOc8GyivKmbGhR5kCYIMxa0hQVMGMKy7mkRWU0JUJyBqWsCBfSkFxbKrQRjbAyn6PdyauDjzEYq_rgniEMihL1-SU1Lqq-vjSyOxPbQ9TQ2gCddvEvwKUkktOR25-4N9ea4X-hOqjrH3M2JVxM5v03AWGpxtNKoe4uF-r4kNf1_TVVJP8AtB-Gjg</recordid><startdate>20030919</startdate><enddate>20030919</enddate><creator>Hee Park, Dae</creator><creator>Bum Kim, Sung</creator><creator>Ahn, Kwang-Duk</creator><creator>Yong Kim, Eui</creator><creator>Jun Kim, Young</creator><creator>Keun Han, Dong</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030919</creationdate><title>In vitro degradation and cytotoxicity of alkyl 2-cyanoacrylate polymers for application to tissue adhesives</title><author>Hee Park, Dae ; Bum Kim, Sung ; Ahn, Kwang-Duk ; Yong Kim, Eui ; Jun Kim, Young ; Keun Han, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3352-814d7d1673a02502ff0d68a2ee6f449168ec105942a7980459e03cf15ce5d5f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>adhesives</topic><topic>Application fields</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>biomaterials</topic><topic>degradation</topic><topic>Exact sciences and technology</topic><topic>Medical sciences</topic><topic>Polymer industry, paints, wood</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Technology of polymers</topic><topic>Technology. Biomaterials. Equipments. Material. Instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hee Park, Dae</creatorcontrib><creatorcontrib>Bum Kim, Sung</creatorcontrib><creatorcontrib>Ahn, Kwang-Duk</creatorcontrib><creatorcontrib>Yong Kim, Eui</creatorcontrib><creatorcontrib>Jun Kim, Young</creatorcontrib><creatorcontrib>Keun Han, Dong</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hee Park, Dae</au><au>Bum Kim, Sung</au><au>Ahn, Kwang-Duk</au><au>Yong Kim, Eui</au><au>Jun Kim, Young</au><au>Keun Han, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro degradation and cytotoxicity of alkyl 2-cyanoacrylate polymers for application to tissue adhesives</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2003-09-19</date><risdate>2003</risdate><volume>89</volume><issue>12</issue><spage>3272</spage><epage>3278</epage><pages>3272-3278</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>To investigate the in vitro degradability and cytotoxicity of long alkyl cyanoacrylate polymers [polycyanoacrylates (PCAs)], we synthesized five kinds of alkyl cyanoacrylates (ethyl, 2‐octyl, n‐octyl, ethylhexyl, and ethyl cyanoacryloyllactate). In vitro degradation in buffer solutions and cell cultures for cytotoxicity were performed with PCAs prepared by various polymerization methods. Lower alkyl homologues such as ethyl cyanoacrylate revealed a higher tissue toxicity than higher alkyl homologues. The amounts of formaldehyde released from various PCAs were not proportional to the rate of degradation. The apparent form of the cyanoacrylate polymers greatly affected the degradation rate, as the powdery polymers degraded much more quickly than the films. A new biodegradable polymer, prepared from ethyl 2‐cyanoacryloyllactate, degraded more quickly than the others. The amount of formaldehyde released from the polymer degradation was high because it degraded rapidly. It was observed from cell culture experiments that the viability of the cells was higher with a lower release of formaldehyde because the alkyl side groups were bigger. Therefore, octyl cyanoacrylate polymers demonstrated lower amounts of formaldehyde by degradation and higher cell viability, and these monomers may be desirable for use as tissue adhesives. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3272–3278, 2003</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.12452</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2003-09, Vol.89 (12), p.3272-3278 |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_crossref_primary_10_1002_app_12452 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | adhesives Application fields Applied sciences Biological and medical sciences biomaterials degradation Exact sciences and technology Medical sciences Polymer industry, paints, wood Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) Technology of polymers Technology. Biomaterials. Equipments. Material. Instrumentation |
title | In vitro degradation and cytotoxicity of alkyl 2-cyanoacrylate polymers for application to tissue adhesives |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20degradation%20and%20cytotoxicity%20of%20alkyl%202-cyanoacrylate%20polymers%20for%20application%20to%20tissue%20adhesives&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Hee%20Park,%20Dae&rft.date=2003-09-19&rft.volume=89&rft.issue=12&rft.spage=3272&rft.epage=3278&rft.pages=3272-3278&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.12452&rft_dat=%3Cwiley_cross%3EAPP12452%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3352-814d7d1673a02502ff0d68a2ee6f449168ec105942a7980459e03cf15ce5d5f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |