Loading…

Calorimetric behavior of methacrylic polymers

Specific heats for poly(methyl methacrylate), poly(diethylaminoethyl methacrylate), poly(cyclohexyl methacrylate), poly(allyl methacrylate), and poly(ethyl acrylate) were measured from 120 to 300°C. with a drop calorimeter. It was found that existing solid‐state theories and equations were unable to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 1968-04, Vol.12 (4), p.853-862
Main Authors: Griskey, Richard G., Hubbell, Douglas O.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4480-63432587d5c7724648115fcb074f13fdee9a8c1d1cc65390a2b33188e0ac43aa3
cites cdi_FETCH-LOGICAL-c4480-63432587d5c7724648115fcb074f13fdee9a8c1d1cc65390a2b33188e0ac43aa3
container_end_page 862
container_issue 4
container_start_page 853
container_title Journal of applied polymer science
container_volume 12
creator Griskey, Richard G.
Hubbell, Douglas O.
description Specific heats for poly(methyl methacrylate), poly(diethylaminoethyl methacrylate), poly(cyclohexyl methacrylate), poly(allyl methacrylate), and poly(ethyl acrylate) were measured from 120 to 300°C. with a drop calorimeter. It was found that existing solid‐state theories and equations were unable to correlate the data. The reason advanced was that such theories were developed for crystalline materials, which differed greatly from the amorphous polymers of the present work. A more successful approach was to use a correlation technique originally developed for organic liquids.
doi_str_mv 10.1002/app.1968.070120420
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_app_1968_070120420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_4D5H08B0_9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4480-63432587d5c7724648115fcb074f13fdee9a8c1d1cc65390a2b33188e0ac43aa3</originalsourceid><addsrcrecordid>eNqNj01LAzEQhoMoWKt_wFP_QOpMvgNeatVWKNqD4jGkaZaubtklKer-eyOV4tHTwMs878xDyCXCGAHYle-6MVplxqABGQgGR2SAYDUVipljMihLSI218pSc5fwGgChBDQid-qZN9TbuUh1Gq7jxH3WbRm01KtHGh9Q3Je_apt_GlM_JSeWbHC9-55C83N89T-d08TR7mE4WNAhhgCouOJNGr2XQmgklTLlWhRVoUSGv1jFabwKuMQQluQXPVpyjMRF8ENx7PiRs3xtSm3OKlevKjz71DsH9CLsi7H6E3UG4QNd76LNuYv8Pwk2Wy7843eN13sWvA-7Tu1Oaa-leH2dO3Mo5mBtwln8DOu5o4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Calorimetric behavior of methacrylic polymers</title><source>Wiley Online Library Polymer Backfiles</source><source>Wiley Online (Archive)</source><creator>Griskey, Richard G. ; Hubbell, Douglas O.</creator><creatorcontrib>Griskey, Richard G. ; Hubbell, Douglas O.</creatorcontrib><description>Specific heats for poly(methyl methacrylate), poly(diethylaminoethyl methacrylate), poly(cyclohexyl methacrylate), poly(allyl methacrylate), and poly(ethyl acrylate) were measured from 120 to 300°C. with a drop calorimeter. It was found that existing solid‐state theories and equations were unable to correlate the data. The reason advanced was that such theories were developed for crystalline materials, which differed greatly from the amorphous polymers of the present work. A more successful approach was to use a correlation technique originally developed for organic liquids.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.1968.070120420</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><ispartof>Journal of applied polymer science, 1968-04, Vol.12 (4), p.853-862</ispartof><rights>Copyright © 1968 John Wiley &amp; Sons, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4480-63432587d5c7724648115fcb074f13fdee9a8c1d1cc65390a2b33188e0ac43aa3</citedby><cites>FETCH-LOGICAL-c4480-63432587d5c7724648115fcb074f13fdee9a8c1d1cc65390a2b33188e0ac43aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.1968.070120420$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.1968.070120420$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27924,27925,46049,46473,50874,50983</link.rule.ids></links><search><creatorcontrib>Griskey, Richard G.</creatorcontrib><creatorcontrib>Hubbell, Douglas O.</creatorcontrib><title>Calorimetric behavior of methacrylic polymers</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Specific heats for poly(methyl methacrylate), poly(diethylaminoethyl methacrylate), poly(cyclohexyl methacrylate), poly(allyl methacrylate), and poly(ethyl acrylate) were measured from 120 to 300°C. with a drop calorimeter. It was found that existing solid‐state theories and equations were unable to correlate the data. The reason advanced was that such theories were developed for crystalline materials, which differed greatly from the amorphous polymers of the present work. A more successful approach was to use a correlation technique originally developed for organic liquids.</description><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1968</creationdate><recordtype>article</recordtype><recordid>eNqNj01LAzEQhoMoWKt_wFP_QOpMvgNeatVWKNqD4jGkaZaubtklKer-eyOV4tHTwMs878xDyCXCGAHYle-6MVplxqABGQgGR2SAYDUVipljMihLSI218pSc5fwGgChBDQid-qZN9TbuUh1Gq7jxH3WbRm01KtHGh9Q3Je_apt_GlM_JSeWbHC9-55C83N89T-d08TR7mE4WNAhhgCouOJNGr2XQmgklTLlWhRVoUSGv1jFabwKuMQQluQXPVpyjMRF8ENx7PiRs3xtSm3OKlevKjz71DsH9CLsi7H6E3UG4QNd76LNuYv8Pwk2Wy7843eN13sWvA-7Tu1Oaa-leH2dO3Mo5mBtwln8DOu5o4A</recordid><startdate>196804</startdate><enddate>196804</enddate><creator>Griskey, Richard G.</creator><creator>Hubbell, Douglas O.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>196804</creationdate><title>Calorimetric behavior of methacrylic polymers</title><author>Griskey, Richard G. ; Hubbell, Douglas O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4480-63432587d5c7724648115fcb074f13fdee9a8c1d1cc65390a2b33188e0ac43aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1968</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griskey, Richard G.</creatorcontrib><creatorcontrib>Hubbell, Douglas O.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griskey, Richard G.</au><au>Hubbell, Douglas O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calorimetric behavior of methacrylic polymers</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>1968-04</date><risdate>1968</risdate><volume>12</volume><issue>4</issue><spage>853</spage><epage>862</epage><pages>853-862</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Specific heats for poly(methyl methacrylate), poly(diethylaminoethyl methacrylate), poly(cyclohexyl methacrylate), poly(allyl methacrylate), and poly(ethyl acrylate) were measured from 120 to 300°C. with a drop calorimeter. It was found that existing solid‐state theories and equations were unable to correlate the data. The reason advanced was that such theories were developed for crystalline materials, which differed greatly from the amorphous polymers of the present work. A more successful approach was to use a correlation technique originally developed for organic liquids.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.1968.070120420</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 1968-04, Vol.12 (4), p.853-862
issn 0021-8995
1097-4628
language eng
recordid cdi_crossref_primary_10_1002_app_1968_070120420
source Wiley Online Library Polymer Backfiles; Wiley Online (Archive)
title Calorimetric behavior of methacrylic polymers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calorimetric%20behavior%20of%20methacrylic%20polymers&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Griskey,%20Richard%20G.&rft.date=1968-04&rft.volume=12&rft.issue=4&rft.spage=853&rft.epage=862&rft.pages=853-862&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.1968.070120420&rft_dat=%3Cistex_cross%3Eark_67375_WNG_4D5H08B0_9%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4480-63432587d5c7724648115fcb074f13fdee9a8c1d1cc65390a2b33188e0ac43aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true