Loading…

Thermodynamics of creep rupture

An earlier discussion of the entropy contributions to the well‐known Zhurkov relationship for creep rupture is developed from a more rigorous basis. It is demonstrated that well‐behaved Zhurkov materials (which follow his relationship closely) undergo quasistatic rupture (thermodynamically reversibl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 1984-05, Vol.29 (5), p.1547-1551
Main Author: Papazian, Harold A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3659-5f9440071aa05c7b5790ab3b318c6af2f193fa391d81ca01cc6b7af82eb6824a3
cites cdi_FETCH-LOGICAL-c3659-5f9440071aa05c7b5790ab3b318c6af2f193fa391d81ca01cc6b7af82eb6824a3
container_end_page 1551
container_issue 5
container_start_page 1547
container_title Journal of applied polymer science
container_volume 29
creator Papazian, Harold A.
description An earlier discussion of the entropy contributions to the well‐known Zhurkov relationship for creep rupture is developed from a more rigorous basis. It is demonstrated that well‐behaved Zhurkov materials (which follow his relationship closely) undergo quasistatic rupture (thermodynamically reversible). Other materials show modified Zhurkov behavior and can be described as undergoing nonquasistatic rupture, with an extra entropy term. By considering studies previously carried out in vacuum, this extra entropy has been attributed to surface phenomena.
doi_str_mv 10.1002/app.1984.070290509
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_app_1984_070290509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_29S97GRJ_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3659-5f9440071aa05c7b5790ab3b318c6af2f193fa391d81ca01cc6b7af82eb6824a3</originalsourceid><addsrcrecordid>eNqNj0tLAzEURoMoWKt_wI1duJ16807ATSlalaJFKy7DnTTB0T6GpEX7750yUly6uptzvssh5JxCnwKwK6zrPrVG9EEDsyDBHpAOBasLoZg5JJ0GooWxVh6Tk5w_ACiVoDrkYvoe0mI12y5xUfncW8WeTyHUvbSp15sUTslRxHkOZ7-3S15vb6bDu2L8NLofDsaF50raQkYrBICmiCC9LqW2gCUvOTVeYWSRWh6RWzoz1CNQ71WpMRoWSmWYQN4lrN31aZVzCtHVqVpg2joKbpfomkS3S3T7xEa6bKUas8d5TLj0Vd6bVgklGGuw6xb7quZh-49hN5hM_n4pWr3K6_C91zF9OqW5lu7tceSYfbF69PzgBP8BTBRw6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermodynamics of creep rupture</title><source>Wiley Online Library Polymer Backfiles</source><source>Wiley-Blackwell Journals (Backfile Content)</source><creator>Papazian, Harold A.</creator><creatorcontrib>Papazian, Harold A.</creatorcontrib><description>An earlier discussion of the entropy contributions to the well‐known Zhurkov relationship for creep rupture is developed from a more rigorous basis. It is demonstrated that well‐behaved Zhurkov materials (which follow his relationship closely) undergo quasistatic rupture (thermodynamically reversible). Other materials show modified Zhurkov behavior and can be described as undergoing nonquasistatic rupture, with an extra entropy term. By considering studies previously carried out in vacuum, this extra entropy has been attributed to surface phenomena.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.1984.070290509</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Exact sciences and technology ; Mechanical properties ; Physical properties ; Polymer industry, paints, wood ; Properties and testing ; Technology of polymers</subject><ispartof>Journal of applied polymer science, 1984-05, Vol.29 (5), p.1547-1551</ispartof><rights>Copyright © 1984 John Wiley &amp; Sons, Inc.</rights><rights>1984 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3659-5f9440071aa05c7b5790ab3b318c6af2f193fa391d81ca01cc6b7af82eb6824a3</citedby><cites>FETCH-LOGICAL-c3659-5f9440071aa05c7b5790ab3b318c6af2f193fa391d81ca01cc6b7af82eb6824a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.1984.070290509$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.1984.070290509$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1415,27922,27923,46047,46471,50872,50981</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9646422$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Papazian, Harold A.</creatorcontrib><title>Thermodynamics of creep rupture</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>An earlier discussion of the entropy contributions to the well‐known Zhurkov relationship for creep rupture is developed from a more rigorous basis. It is demonstrated that well‐behaved Zhurkov materials (which follow his relationship closely) undergo quasistatic rupture (thermodynamically reversible). Other materials show modified Zhurkov behavior and can be described as undergoing nonquasistatic rupture, with an extra entropy term. By considering studies previously carried out in vacuum, this extra entropy has been attributed to surface phenomena.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Mechanical properties</subject><subject>Physical properties</subject><subject>Polymer industry, paints, wood</subject><subject>Properties and testing</subject><subject>Technology of polymers</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNqNj0tLAzEURoMoWKt_wI1duJ16807ATSlalaJFKy7DnTTB0T6GpEX7750yUly6uptzvssh5JxCnwKwK6zrPrVG9EEDsyDBHpAOBasLoZg5JJ0GooWxVh6Tk5w_ACiVoDrkYvoe0mI12y5xUfncW8WeTyHUvbSp15sUTslRxHkOZ7-3S15vb6bDu2L8NLofDsaF50raQkYrBICmiCC9LqW2gCUvOTVeYWSRWh6RWzoz1CNQ71WpMRoWSmWYQN4lrN31aZVzCtHVqVpg2joKbpfomkS3S3T7xEa6bKUas8d5TLj0Vd6bVgklGGuw6xb7quZh-49hN5hM_n4pWr3K6_C91zF9OqW5lu7tceSYfbF69PzgBP8BTBRw6Q</recordid><startdate>198405</startdate><enddate>198405</enddate><creator>Papazian, Harold A.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198405</creationdate><title>Thermodynamics of creep rupture</title><author>Papazian, Harold A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3659-5f9440071aa05c7b5790ab3b318c6af2f193fa391d81ca01cc6b7af82eb6824a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Mechanical properties</topic><topic>Physical properties</topic><topic>Polymer industry, paints, wood</topic><topic>Properties and testing</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papazian, Harold A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papazian, Harold A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamics of creep rupture</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>1984-05</date><risdate>1984</risdate><volume>29</volume><issue>5</issue><spage>1547</spage><epage>1551</epage><pages>1547-1551</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>An earlier discussion of the entropy contributions to the well‐known Zhurkov relationship for creep rupture is developed from a more rigorous basis. It is demonstrated that well‐behaved Zhurkov materials (which follow his relationship closely) undergo quasistatic rupture (thermodynamically reversible). Other materials show modified Zhurkov behavior and can be described as undergoing nonquasistatic rupture, with an extra entropy term. By considering studies previously carried out in vacuum, this extra entropy has been attributed to surface phenomena.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.1984.070290509</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 1984-05, Vol.29 (5), p.1547-1551
issn 0021-8995
1097-4628
language eng
recordid cdi_crossref_primary_10_1002_app_1984_070290509
source Wiley Online Library Polymer Backfiles; Wiley-Blackwell Journals (Backfile Content)
subjects Applied sciences
Exact sciences and technology
Mechanical properties
Physical properties
Polymer industry, paints, wood
Properties and testing
Technology of polymers
title Thermodynamics of creep rupture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamics%20of%20creep%20rupture&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Papazian,%20Harold%20A.&rft.date=1984-05&rft.volume=29&rft.issue=5&rft.spage=1547&rft.epage=1551&rft.pages=1547-1551&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.1984.070290509&rft_dat=%3Cistex_cross%3Eark_67375_WNG_29S97GRJ_4%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3659-5f9440071aa05c7b5790ab3b318c6af2f193fa391d81ca01cc6b7af82eb6824a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true