Loading…

Preparation and characterization of micron-sized non-porous magnetic polymer microspheres with immobilized metal affinity ligands by modified suspension polymerization

A novel preparation method of micron‐sized non‐porous magnetic polymer microspheres with immobilized metal affinity ligands was developed. A modified suspension polymerization of methacrylate (MA) and divinylbenzene (DVB) was performed in the presence of oleic acid‐coated magnetic Fe3O4 nanoparticle...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2005-06, Vol.96 (6), p.2174-2180
Main Authors: Ma, Zhi-Ya, Guan, Yue-Ping, Liu, Xian-Qiao, Liu, Hui-Zhou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel preparation method of micron‐sized non‐porous magnetic polymer microspheres with immobilized metal affinity ligands was developed. A modified suspension polymerization of methacrylate (MA) and divinylbenzene (DVB) was performed in the presence of oleic acid‐coated magnetic Fe3O4 nanoparticles to obtain magnetic poly (methacrylate‐divinylbenzene) (mPMA‐DVB) microspheres. Through ammonolysis using ethylenediamine (EDA) and subsequent carboxymethylation with chloroacetic acid, magnetic polymer microspheres with chelate ligands of iminodiacetic acid (IDA) were obtained. Charging with copper ions resulted in magnetic polymer microspheres capable of binding proteins that display metal affinity. The morphology, magnetic properties, and composition of magnetic polymer microspheres were characterized with scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), and Fourier transform infrared spectroscopy (FTIR), respectively. Bovine hemoglobin (BHb) was adopted as a model protein to investigate their affinity adsorption capacity. It was found that the adsorption capacity was as high as 168.2 mg/g microspheres and with rather low non‐specific adsorption. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2174–2180, 2005
ISSN:0021-8995
1097-4628
DOI:10.1002/app.21688