Loading…
Size-Dependent Vulnerability of Lumbar Motor Neuron Dendritic Degeneration in SOD1 G93A Mice
The motor neuron (MN) soma surface area is correlated with motor unit type. Larger MNs innervate fast fatigue-intermediate (FInt) or fast-fatiguable (FF) muscle fibers in type FInt and FF motor units, respectively. Smaller MNs innervate slow-twitch fatigue-resistant (S) or fast fatigue-resistant (FR...
Saved in:
Published in: | Anatomical record (Hoboken, N.J. : 2007) N.J. : 2007), 2020-05, Vol.303 (5), p.1455-1471 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The motor neuron (MN) soma surface area is correlated with motor unit type. Larger MNs innervate fast fatigue-intermediate (FInt) or fast-fatiguable (FF) muscle fibers in type FInt and FF motor units, respectively. Smaller MNs innervate slow-twitch fatigue-resistant (S) or fast fatigue-resistant (FR) muscle fibers in type S and FR motor units, respectively. In amyotrophic lateral sclerosis (ALS), FInt and FF motor units are more vulnerable, with denervation and MN death occurring for these units before the more resilient S and FR units. Abnormal MN dendritic arbors have been observed in ALS in humans and rodent models. We used a Golgi-Cox impregnation protocol to examine soma size-dependent changes in the dendritic morphology of lumbar MNs in SOD1
mice, a model of ALS, at pre-symptomatic, onset and mid-disease stages. In wildtype control mice, the relationship between MN soma surface area and dendritic length or dendritic spine number was highly linear (i.e., increased MN soma size correlated with increased dendritic length and spines). By contrast, in SOD1
mice, this linear relationship was lost and dendritic length reduction and spine loss were observed in larger MNs, from pre-symptomatic stages onward. These changes correlated with the neuromotor symptoms of ALS in rodent models. At presymptomatic ages, changes were restricted to the larger MNs, likely to comprise vulnerable FInt and FF motor units. Our results suggest morphological changes of MN dendrites and dendritic spines are likely to contribute ALS pathogenesis, not compensate for it. Anat Rec, 303:1455-1471, 2020. © 2019 American Association for Anatomy. |
---|---|
ISSN: | 1932-8486 1932-8494 |
DOI: | 10.1002/ar.24255 |