Loading…
Cover Picture: Astron. Nachr. 9/2024
Denoising a medium resolution stellar spectrum with neural networks. Top : Example of a noiseless simulated stellar spectrum (blue) transformed to an “observation” by adding a realistic noise component (gray) such that the effective S/N≈19. Middle : Comparison of the original noiseless simulated spe...
Saved in:
Published in: | Astronomische Nachrichten 2024-11, Vol.345 (9-10) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 9-10 |
container_start_page | |
container_title | Astronomische Nachrichten |
container_volume | 345 |
creator | Pál, Balázs Dobos, László |
description | Denoising a medium resolution stellar spectrum with neural networks. Top : Example of a noiseless simulated stellar spectrum (blue) transformed to an “observation” by adding a realistic noise component (gray) such that the effective S/N≈19. Middle : Comparison of the original noiseless simulated spectrum (blue) and the reconstructed spectrum (dashed orange) using a trained denoising autoencoder. The two lines overlap almost entirely, indicating the high accuracy of the machine learning method. Bottom : Relative error calculated as the fraction of pixel‐wise residual noise and the original noiseless flux. The mean and maximum of the relative error are 0.175% and 1.806%, respectively. Formore details see the related paper by Pál and Dobos, published in this issue e240049 . image |
doi_str_mv | 10.1002/asna.20249017 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_asna_20249017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_asna_20249017</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_asna_202490173</originalsourceid><addsrcrecordid>eNpjYBA1NNAzNDAw0k8szkvUMzIwMrE0MDRnYuA0NDUy1DW2tDRhYeA0MDAw0TUzNjbnYOAqLs4Cci3NjAw5GVSc88tSixQCMpNLSotSrRQci0uK8vP0FPwSkzOK9BQs9UHm8TCwpiXmFKfyQmluBl031xBnD93kovzi4qLUtPiCoszcxKLKeEODeJBT4kFOiYc5xZhU9QB7aDiq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cover Picture: Astron. Nachr. 9/2024</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Pál, Balázs ; Dobos, László</creator><creatorcontrib>Pál, Balázs ; Dobos, László</creatorcontrib><description>Denoising a medium resolution stellar spectrum with neural networks. Top : Example of a noiseless simulated stellar spectrum (blue) transformed to an “observation” by adding a realistic noise component (gray) such that the effective S/N≈19. Middle : Comparison of the original noiseless simulated spectrum (blue) and the reconstructed spectrum (dashed orange) using a trained denoising autoencoder. The two lines overlap almost entirely, indicating the high accuracy of the machine learning method. Bottom : Relative error calculated as the fraction of pixel‐wise residual noise and the original noiseless flux. The mean and maximum of the relative error are 0.175% and 1.806%, respectively. Formore details see the related paper by Pál and Dobos, published in this issue e240049 . image</description><identifier>ISSN: 0004-6337</identifier><identifier>EISSN: 1521-3994</identifier><identifier>DOI: 10.1002/asna.20249017</identifier><language>eng</language><ispartof>Astronomische Nachrichten, 2024-11, Vol.345 (9-10)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pál, Balázs</creatorcontrib><creatorcontrib>Dobos, László</creatorcontrib><title>Cover Picture: Astron. Nachr. 9/2024</title><title>Astronomische Nachrichten</title><description>Denoising a medium resolution stellar spectrum with neural networks. Top : Example of a noiseless simulated stellar spectrum (blue) transformed to an “observation” by adding a realistic noise component (gray) such that the effective S/N≈19. Middle : Comparison of the original noiseless simulated spectrum (blue) and the reconstructed spectrum (dashed orange) using a trained denoising autoencoder. The two lines overlap almost entirely, indicating the high accuracy of the machine learning method. Bottom : Relative error calculated as the fraction of pixel‐wise residual noise and the original noiseless flux. The mean and maximum of the relative error are 0.175% and 1.806%, respectively. Formore details see the related paper by Pál and Dobos, published in this issue e240049 . image</description><issn>0004-6337</issn><issn>1521-3994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpjYBA1NNAzNDAw0k8szkvUMzIwMrE0MDRnYuA0NDUy1DW2tDRhYeA0MDAw0TUzNjbnYOAqLs4Cci3NjAw5GVSc88tSixQCMpNLSotSrRQci0uK8vP0FPwSkzOK9BQs9UHm8TCwpiXmFKfyQmluBl031xBnD93kovzi4qLUtPiCoszcxKLKeEODeJBT4kFOiYc5xZhU9QB7aDiq</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Pál, Balázs</creator><creator>Dobos, László</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202411</creationdate><title>Cover Picture: Astron. Nachr. 9/2024</title><author>Pál, Balázs ; Dobos, László</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_asna_202490173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pál, Balázs</creatorcontrib><creatorcontrib>Dobos, László</creatorcontrib><collection>CrossRef</collection><jtitle>Astronomische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pál, Balázs</au><au>Dobos, László</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cover Picture: Astron. Nachr. 9/2024</atitle><jtitle>Astronomische Nachrichten</jtitle><date>2024-11</date><risdate>2024</risdate><volume>345</volume><issue>9-10</issue><issn>0004-6337</issn><eissn>1521-3994</eissn><abstract>Denoising a medium resolution stellar spectrum with neural networks. Top : Example of a noiseless simulated stellar spectrum (blue) transformed to an “observation” by adding a realistic noise component (gray) such that the effective S/N≈19. Middle : Comparison of the original noiseless simulated spectrum (blue) and the reconstructed spectrum (dashed orange) using a trained denoising autoencoder. The two lines overlap almost entirely, indicating the high accuracy of the machine learning method. Bottom : Relative error calculated as the fraction of pixel‐wise residual noise and the original noiseless flux. The mean and maximum of the relative error are 0.175% and 1.806%, respectively. Formore details see the related paper by Pál and Dobos, published in this issue e240049 . image</abstract><doi>10.1002/asna.20249017</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6337 |
ispartof | Astronomische Nachrichten, 2024-11, Vol.345 (9-10) |
issn | 0004-6337 1521-3994 |
language | eng |
recordid | cdi_crossref_primary_10_1002_asna_20249017 |
source | Wiley-Blackwell Read & Publish Collection |
title | Cover Picture: Astron. Nachr. 9/2024 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cover%20Picture:%20Astron.%20Nachr.%209/2024&rft.jtitle=Astronomische%20Nachrichten&rft.au=P%C3%A1l,%20Bal%C3%A1zs&rft.date=2024-11&rft.volume=345&rft.issue=9-10&rft.issn=0004-6337&rft.eissn=1521-3994&rft_id=info:doi/10.1002/asna.20249017&rft_dat=%3Ccrossref%3E10_1002_asna_20249017%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-crossref_primary_10_1002_asna_202490173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |