Loading…
Exploring the structure characteristics and major channels of cytochrome P450 2A6, 2A13, and 2E1 with pilocarpine
The majority of cytochromes P450 play a critical role in metabolism of endogenous and exogenous substrates, some of its products are carcinogens. Therefore, inhibition of P450 enzymes activity can promote the detoxification and elimination of chemical carcinogens. In this study, molecular dynamics (...
Saved in:
Published in: | Biopolymers 2018-04, Vol.109 (4), p.e23108-n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The majority of cytochromes P450 play a critical role in metabolism of endogenous and exogenous substrates, some of its products are carcinogens. Therefore, inhibition of P450 enzymes activity can promote the detoxification and elimination of chemical carcinogens. In this study, molecular dynamics (MD) simulations and adaptive steered molecular dynamics (ASMD) simulations were performed to explore the structure features and channel dynamics of three P450 isoforms 2A6, 2A13, and 2E1 bound with the common inhibitor pilocarpine. The binding free energy results combined with the PMF calculations give a reasonable ranking of binding affinity, which are consistent with the experimental data. Our results uncover how a sequence divergence of different CYP2 enzymes causes individual variations in major channel selections. On the basis of channel bottleneck and energy decomposition analysis, we propose a gating mechanism of their respective major channels in three enzymes, which may be attributed to a reversal of Phe209 in CYP2A6/2A13, as well as the rotation of Phe116 and Phe298 in CYP2E1. The hydrophobic residues not only make strong hydrophobic interactions with inhibitor, but also act as gatekeeper to regulate the opening of channel. The present study provides important insights into the structure–function relationships of three cytochrome P450s and the molecular basis for development of potent inhibitors. |
---|---|
ISSN: | 0006-3525 1097-0282 |
DOI: | 10.1002/bip.23108 |