Loading…

Application of mass and energy balance regularities in fermentation

Material and energy balances for fermentation processes are developed based on the facts that the heat of reaction per electron transferred to oxygen for a wide variety of organic molecules, the number of available electrons per carbon atom in biomass, and the weight fraction carbon in biomass are r...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and bioengineering 1978-10, Vol.20 (10), p.1595-1621
Main Authors: Erickson, L. E., Minkevich, I. G., Eroshin, V. K.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Material and energy balances for fermentation processes are developed based on the facts that the heat of reaction per electron transferred to oxygen for a wide variety of organic molecules, the number of available electrons per carbon atom in biomass, and the weight fraction carbon in biomass are relatively constant. Mass–energy balance equations are developed which relate the biomass energetic yield coefficient to sets of variables which may be determined experimentally. Organic substrate consumption, biomass production, oxygen consumption, carbon dioxide production, heat evolution, and nitrogen consumption are considered as measured variables. Application of the balances using direct and indirect methods of yield coefficient estimation is illustrated using experimental results from the literature. Product formation is included in the balance equations and the effect of product formation on biomass yield estimates is examined. Application of mass–energy balances in the optimal operation of continuous single‐cell protein production facilities is examined, and the variation of optimal operating conditions with changes in yield are illustrated for methanol as organic substrate.
ISSN:0006-3592
1097-0290
DOI:10.1002/bit.260201008