Loading…

A novel approach for concurrent quantitation of glutathione, glutathione disulfide, and 2-hydroxyethylated glutathione in lungs of mice exposed to ethylene oxide, using liquid chromatography-positive electrospray tandem mass spectrometry

ABSTRACT Glutathione (GSH), glutathione disulfide (GSSG) and 2‐hydroxyethylated glutathione (HESG) are important biomarkers for exploring the genotoxicity mechanism of ethylene oxide (EO) or ethylene in vivo. A liquid chromatography–tandem mass spectrometry method was developed for simultaneous dete...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical chromatography 2015-09, Vol.29 (9), p.1364-1374
Main Authors: Zhang, Fagen, Bartels, Michael J., LeBaron, Matthew J., Schisler, Melissa R., Gollapudi, B. Bhaskar, Moore, Nigel P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Glutathione (GSH), glutathione disulfide (GSSG) and 2‐hydroxyethylated glutathione (HESG) are important biomarkers for exploring the genotoxicity mechanism of ethylene oxide (EO) or ethylene in vivo. A liquid chromatography–tandem mass spectrometry method was developed for simultaneous determination of GSH, GSSG and HESG in mouse lung tissues after inhalation exposure to EO. The lower limit of quantitation for all these biomarkers was 0.002 µg/mL. The linearity of the calibration curves for all analytes was >0.998. The intra‐day assay precision relative standard deviation (RSD) values for quality control samples for all analytes were ≤12.8% with accuracy values ranging from 87.2 to 113%. The inter‐day assay precision (RSD) values for all analytes were ≤13.1% with accuracy values ranging from 86.9 to 103%. This method was applied to concurrently determine the levels of GSH, GSSG and HESG in lung samples isolated from mouse after 4‐week inhalation exposure to EO at 0, 10, 50, 100 and 200 ppm. Copyright © 2015 John Wiley & Sons, Ltd.
ISSN:0269-3879
1099-0801
DOI:10.1002/bmc.3432