Loading…

Optimization of Insecticidal Triterpene Derivatives by Biomimetic Oxidations with Hydrogen Peroxide and Iodosobenzene Catalyzed by Mn III and Fe III Porphyrin Complexes

Semisynthetic functionalized triterpenes (4α,14-dimethyl-5α,8α-8,9-epoxycholestan-3β-yl acetate; 4α,14-dimethyl-5α-cholest-8-ene-3,7,11-trione; 4α,14-dimethyl-5α-cholesta-7,9(11)-dien-3-one and 4α,14-dimethyl-5α-cholest-8-en-3β-yl acetate), previously prepared from 31-norlanostenol, a natural insect...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry & biodiversity 2020-09, Vol.17 (9), p.e2000287
Main Authors: Mazoir, Noureddine, Benharref, Ahmed, Vaca, Laura, Reina, Matías, González-Coloma, Azucena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1078-180c01e3f49aca2c52cf52e72f44e3fe35953b7a55c430c27165cab4e7d8ff4b3
cites cdi_FETCH-LOGICAL-c1078-180c01e3f49aca2c52cf52e72f44e3fe35953b7a55c430c27165cab4e7d8ff4b3
container_end_page
container_issue 9
container_start_page e2000287
container_title Chemistry & biodiversity
container_volume 17
creator Mazoir, Noureddine
Benharref, Ahmed
Vaca, Laura
Reina, Matías
González-Coloma, Azucena
description Semisynthetic functionalized triterpenes (4α,14-dimethyl-5α,8α-8,9-epoxycholestan-3β-yl acetate; 4α,14-dimethyl-5α-cholest-8-ene-3,7,11-trione; 4α,14-dimethyl-5α-cholesta-7,9(11)-dien-3-one and 4α,14-dimethyl-5α-cholest-8-en-3β-yl acetate), previously prepared from 31-norlanostenol, a natural insecticide isolated from the latex of Euphorbia officinarum, have been subjected to oxidation with hydrogen peroxide (H O ) and iodosobenzene (PhIO) catalyzed by porphyrin complexes (cytochrome P-450 models) in order to obtain optimized derivatives with high regioselectivity. The main transformations were epoxidation of the double bonds and hydroxylations of non-activated C-H groups and the reaction products were 25-hydroxy-4α,14-dimethyl-5α-cholesta-7,9(11)-dien-3β-yl acetate (59 %), 25-hydroxy-4α,14-dimethyl-5α-cholest-8-ene-3,7,11-trione (60 %), 4α,14-dimethyl-5α,7β-7,8-epoxycholest-9(11)-en-3-one (22 %), 8-hydroxy-4α,14-dimethyl-5α-cholest-9(11)-ene-3,7-dione (16 %), 12α-hydroxy-4α,14-dimethyl-5α,7β-7,8-epoxycholest-9(11)-en-3-one (16 %), and 4α,14-dimethyl-5α,8α-8,9-epoxycholestan-3β-yl acetate (26 %), respectively. We also investigated the insect (Myzus persicae, Rhopalosiphum padi and Spodoptera littoralis) antifeedant and postingestive effects of these terpenoid derivatives. None of the compounds tested had significant antifeedant effects, however, all were more effective postingestive toxicants on S. littoralis larvae than the natural compound 31-norlanostenol, with 4α,14-dimethyl-5α,8α-8,9-epoxycholestan-3β-yl acetate being the most active. The study of their structure-activity relationships points out at the importance of C3 and C7 substituents.
doi_str_mv 10.1002/cbdv.202000287
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cbdv_202000287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32644248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1078-180c01e3f49aca2c52cf52e72f44e3fe35953b7a55c430c27165cab4e7d8ff4b3</originalsourceid><addsrcrecordid>eNo9kN9OwjAUxhujEURvvTR9AbDtOjYudYos0cAFXi9ddyo1W7u0ExlP5GO6gXJ1_v2-LzkfQreUTCgh7F7mxXbCCCPdEEdnaEinlI1pHJPzUx-xAbry_rNHYhJfokHAppwzHg_Rz7JudKX3otHWYKtwajzIRktdiBKvnW7A1WAAP4HT247agsd5ix-1rXQFHYiXu47t5R5_62aDF23h7AcYvAJnuxtgYQqc2sJ6m4PZ926JaETZ7qHovd4MTtP0QM3h0K6sqzet0wYntqpL2IG_RhdKlB5u_uoIvc-f18li_Lp8SZOH17GkJIq7b4kkFALFZ0IKJkMmVcggYorzbgtBOAuDPBJhKHlAJIvoNJQi5xAVsVI8D0ZocvSVznrvQGW105VwbUZJ1kee9ZFnp8g7wd1RUH_lFRQn_D_j4BfQ54Bi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of Insecticidal Triterpene Derivatives by Biomimetic Oxidations with Hydrogen Peroxide and Iodosobenzene Catalyzed by Mn III and Fe III Porphyrin Complexes</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Mazoir, Noureddine ; Benharref, Ahmed ; Vaca, Laura ; Reina, Matías ; González-Coloma, Azucena</creator><creatorcontrib>Mazoir, Noureddine ; Benharref, Ahmed ; Vaca, Laura ; Reina, Matías ; González-Coloma, Azucena</creatorcontrib><description>Semisynthetic functionalized triterpenes (4α,14-dimethyl-5α,8α-8,9-epoxycholestan-3β-yl acetate; 4α,14-dimethyl-5α-cholest-8-ene-3,7,11-trione; 4α,14-dimethyl-5α-cholesta-7,9(11)-dien-3-one and 4α,14-dimethyl-5α-cholest-8-en-3β-yl acetate), previously prepared from 31-norlanostenol, a natural insecticide isolated from the latex of Euphorbia officinarum, have been subjected to oxidation with hydrogen peroxide (H O ) and iodosobenzene (PhIO) catalyzed by porphyrin complexes (cytochrome P-450 models) in order to obtain optimized derivatives with high regioselectivity. The main transformations were epoxidation of the double bonds and hydroxylations of non-activated C-H groups and the reaction products were 25-hydroxy-4α,14-dimethyl-5α-cholesta-7,9(11)-dien-3β-yl acetate (59 %), 25-hydroxy-4α,14-dimethyl-5α-cholest-8-ene-3,7,11-trione (60 %), 4α,14-dimethyl-5α,7β-7,8-epoxycholest-9(11)-en-3-one (22 %), 8-hydroxy-4α,14-dimethyl-5α-cholest-9(11)-ene-3,7-dione (16 %), 12α-hydroxy-4α,14-dimethyl-5α,7β-7,8-epoxycholest-9(11)-en-3-one (16 %), and 4α,14-dimethyl-5α,8α-8,9-epoxycholestan-3β-yl acetate (26 %), respectively. We also investigated the insect (Myzus persicae, Rhopalosiphum padi and Spodoptera littoralis) antifeedant and postingestive effects of these terpenoid derivatives. None of the compounds tested had significant antifeedant effects, however, all were more effective postingestive toxicants on S. littoralis larvae than the natural compound 31-norlanostenol, with 4α,14-dimethyl-5α,8α-8,9-epoxycholestan-3β-yl acetate being the most active. The study of their structure-activity relationships points out at the importance of C3 and C7 substituents.</description><identifier>ISSN: 1612-1872</identifier><identifier>EISSN: 1612-1880</identifier><identifier>DOI: 10.1002/cbdv.202000287</identifier><identifier>PMID: 32644248</identifier><language>eng</language><publisher>Switzerland</publisher><subject>Animals ; Biomimetic Materials - chemical synthesis ; Biomimetic Materials - chemistry ; Biomimetic Materials - pharmacology ; Catalysis ; Dose-Response Relationship, Drug ; Feeding Behavior - drug effects ; Ferric Compounds - chemistry ; Hydrogen Peroxide - chemistry ; Hydrogen Peroxide - pharmacology ; Insecta - drug effects ; Insecticides - chemical synthesis ; Insecticides - chemistry ; Insecticides - pharmacology ; Iodobenzenes - chemistry ; Iodobenzenes - pharmacology ; Manganese - chemistry ; Metalloporphyrins - chemistry ; Molecular Structure ; Oxidation-Reduction ; Structure-Activity Relationship ; Triterpenes - chemical synthesis ; Triterpenes - chemistry ; Triterpenes - pharmacology</subject><ispartof>Chemistry &amp; biodiversity, 2020-09, Vol.17 (9), p.e2000287</ispartof><rights>2020 Wiley-VHCA AG, Zurich, Switzerland.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1078-180c01e3f49aca2c52cf52e72f44e3fe35953b7a55c430c27165cab4e7d8ff4b3</citedby><cites>FETCH-LOGICAL-c1078-180c01e3f49aca2c52cf52e72f44e3fe35953b7a55c430c27165cab4e7d8ff4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32644248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mazoir, Noureddine</creatorcontrib><creatorcontrib>Benharref, Ahmed</creatorcontrib><creatorcontrib>Vaca, Laura</creatorcontrib><creatorcontrib>Reina, Matías</creatorcontrib><creatorcontrib>González-Coloma, Azucena</creatorcontrib><title>Optimization of Insecticidal Triterpene Derivatives by Biomimetic Oxidations with Hydrogen Peroxide and Iodosobenzene Catalyzed by Mn III and Fe III Porphyrin Complexes</title><title>Chemistry &amp; biodiversity</title><addtitle>Chem Biodivers</addtitle><description>Semisynthetic functionalized triterpenes (4α,14-dimethyl-5α,8α-8,9-epoxycholestan-3β-yl acetate; 4α,14-dimethyl-5α-cholest-8-ene-3,7,11-trione; 4α,14-dimethyl-5α-cholesta-7,9(11)-dien-3-one and 4α,14-dimethyl-5α-cholest-8-en-3β-yl acetate), previously prepared from 31-norlanostenol, a natural insecticide isolated from the latex of Euphorbia officinarum, have been subjected to oxidation with hydrogen peroxide (H O ) and iodosobenzene (PhIO) catalyzed by porphyrin complexes (cytochrome P-450 models) in order to obtain optimized derivatives with high regioselectivity. The main transformations were epoxidation of the double bonds and hydroxylations of non-activated C-H groups and the reaction products were 25-hydroxy-4α,14-dimethyl-5α-cholesta-7,9(11)-dien-3β-yl acetate (59 %), 25-hydroxy-4α,14-dimethyl-5α-cholest-8-ene-3,7,11-trione (60 %), 4α,14-dimethyl-5α,7β-7,8-epoxycholest-9(11)-en-3-one (22 %), 8-hydroxy-4α,14-dimethyl-5α-cholest-9(11)-ene-3,7-dione (16 %), 12α-hydroxy-4α,14-dimethyl-5α,7β-7,8-epoxycholest-9(11)-en-3-one (16 %), and 4α,14-dimethyl-5α,8α-8,9-epoxycholestan-3β-yl acetate (26 %), respectively. We also investigated the insect (Myzus persicae, Rhopalosiphum padi and Spodoptera littoralis) antifeedant and postingestive effects of these terpenoid derivatives. None of the compounds tested had significant antifeedant effects, however, all were more effective postingestive toxicants on S. littoralis larvae than the natural compound 31-norlanostenol, with 4α,14-dimethyl-5α,8α-8,9-epoxycholestan-3β-yl acetate being the most active. The study of their structure-activity relationships points out at the importance of C3 and C7 substituents.</description><subject>Animals</subject><subject>Biomimetic Materials - chemical synthesis</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetic Materials - pharmacology</subject><subject>Catalysis</subject><subject>Dose-Response Relationship, Drug</subject><subject>Feeding Behavior - drug effects</subject><subject>Ferric Compounds - chemistry</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Insecta - drug effects</subject><subject>Insecticides - chemical synthesis</subject><subject>Insecticides - chemistry</subject><subject>Insecticides - pharmacology</subject><subject>Iodobenzenes - chemistry</subject><subject>Iodobenzenes - pharmacology</subject><subject>Manganese - chemistry</subject><subject>Metalloporphyrins - chemistry</subject><subject>Molecular Structure</subject><subject>Oxidation-Reduction</subject><subject>Structure-Activity Relationship</subject><subject>Triterpenes - chemical synthesis</subject><subject>Triterpenes - chemistry</subject><subject>Triterpenes - pharmacology</subject><issn>1612-1872</issn><issn>1612-1880</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kN9OwjAUxhujEURvvTR9AbDtOjYudYos0cAFXi9ddyo1W7u0ExlP5GO6gXJ1_v2-LzkfQreUTCgh7F7mxXbCCCPdEEdnaEinlI1pHJPzUx-xAbry_rNHYhJfokHAppwzHg_Rz7JudKX3otHWYKtwajzIRktdiBKvnW7A1WAAP4HT247agsd5ix-1rXQFHYiXu47t5R5_62aDF23h7AcYvAJnuxtgYQqc2sJ6m4PZ926JaETZ7qHovd4MTtP0QM3h0K6sqzet0wYntqpL2IG_RhdKlB5u_uoIvc-f18li_Lp8SZOH17GkJIq7b4kkFALFZ0IKJkMmVcggYorzbgtBOAuDPBJhKHlAJIvoNJQi5xAVsVI8D0ZocvSVznrvQGW105VwbUZJ1kee9ZFnp8g7wd1RUH_lFRQn_D_j4BfQ54Bi</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Mazoir, Noureddine</creator><creator>Benharref, Ahmed</creator><creator>Vaca, Laura</creator><creator>Reina, Matías</creator><creator>González-Coloma, Azucena</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202009</creationdate><title>Optimization of Insecticidal Triterpene Derivatives by Biomimetic Oxidations with Hydrogen Peroxide and Iodosobenzene Catalyzed by Mn III and Fe III Porphyrin Complexes</title><author>Mazoir, Noureddine ; Benharref, Ahmed ; Vaca, Laura ; Reina, Matías ; González-Coloma, Azucena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1078-180c01e3f49aca2c52cf52e72f44e3fe35953b7a55c430c27165cab4e7d8ff4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biomimetic Materials - chemical synthesis</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetic Materials - pharmacology</topic><topic>Catalysis</topic><topic>Dose-Response Relationship, Drug</topic><topic>Feeding Behavior - drug effects</topic><topic>Ferric Compounds - chemistry</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Insecta - drug effects</topic><topic>Insecticides - chemical synthesis</topic><topic>Insecticides - chemistry</topic><topic>Insecticides - pharmacology</topic><topic>Iodobenzenes - chemistry</topic><topic>Iodobenzenes - pharmacology</topic><topic>Manganese - chemistry</topic><topic>Metalloporphyrins - chemistry</topic><topic>Molecular Structure</topic><topic>Oxidation-Reduction</topic><topic>Structure-Activity Relationship</topic><topic>Triterpenes - chemical synthesis</topic><topic>Triterpenes - chemistry</topic><topic>Triterpenes - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazoir, Noureddine</creatorcontrib><creatorcontrib>Benharref, Ahmed</creatorcontrib><creatorcontrib>Vaca, Laura</creatorcontrib><creatorcontrib>Reina, Matías</creatorcontrib><creatorcontrib>González-Coloma, Azucena</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Chemistry &amp; biodiversity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazoir, Noureddine</au><au>Benharref, Ahmed</au><au>Vaca, Laura</au><au>Reina, Matías</au><au>González-Coloma, Azucena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Insecticidal Triterpene Derivatives by Biomimetic Oxidations with Hydrogen Peroxide and Iodosobenzene Catalyzed by Mn III and Fe III Porphyrin Complexes</atitle><jtitle>Chemistry &amp; biodiversity</jtitle><addtitle>Chem Biodivers</addtitle><date>2020-09</date><risdate>2020</risdate><volume>17</volume><issue>9</issue><spage>e2000287</spage><pages>e2000287-</pages><issn>1612-1872</issn><eissn>1612-1880</eissn><abstract>Semisynthetic functionalized triterpenes (4α,14-dimethyl-5α,8α-8,9-epoxycholestan-3β-yl acetate; 4α,14-dimethyl-5α-cholest-8-ene-3,7,11-trione; 4α,14-dimethyl-5α-cholesta-7,9(11)-dien-3-one and 4α,14-dimethyl-5α-cholest-8-en-3β-yl acetate), previously prepared from 31-norlanostenol, a natural insecticide isolated from the latex of Euphorbia officinarum, have been subjected to oxidation with hydrogen peroxide (H O ) and iodosobenzene (PhIO) catalyzed by porphyrin complexes (cytochrome P-450 models) in order to obtain optimized derivatives with high regioselectivity. The main transformations were epoxidation of the double bonds and hydroxylations of non-activated C-H groups and the reaction products were 25-hydroxy-4α,14-dimethyl-5α-cholesta-7,9(11)-dien-3β-yl acetate (59 %), 25-hydroxy-4α,14-dimethyl-5α-cholest-8-ene-3,7,11-trione (60 %), 4α,14-dimethyl-5α,7β-7,8-epoxycholest-9(11)-en-3-one (22 %), 8-hydroxy-4α,14-dimethyl-5α-cholest-9(11)-ene-3,7-dione (16 %), 12α-hydroxy-4α,14-dimethyl-5α,7β-7,8-epoxycholest-9(11)-en-3-one (16 %), and 4α,14-dimethyl-5α,8α-8,9-epoxycholestan-3β-yl acetate (26 %), respectively. We also investigated the insect (Myzus persicae, Rhopalosiphum padi and Spodoptera littoralis) antifeedant and postingestive effects of these terpenoid derivatives. None of the compounds tested had significant antifeedant effects, however, all were more effective postingestive toxicants on S. littoralis larvae than the natural compound 31-norlanostenol, with 4α,14-dimethyl-5α,8α-8,9-epoxycholestan-3β-yl acetate being the most active. The study of their structure-activity relationships points out at the importance of C3 and C7 substituents.</abstract><cop>Switzerland</cop><pmid>32644248</pmid><doi>10.1002/cbdv.202000287</doi></addata></record>
fulltext fulltext
identifier ISSN: 1612-1872
ispartof Chemistry & biodiversity, 2020-09, Vol.17 (9), p.e2000287
issn 1612-1872
1612-1880
language eng
recordid cdi_crossref_primary_10_1002_cbdv_202000287
source Wiley-Blackwell Read & Publish Collection
subjects Animals
Biomimetic Materials - chemical synthesis
Biomimetic Materials - chemistry
Biomimetic Materials - pharmacology
Catalysis
Dose-Response Relationship, Drug
Feeding Behavior - drug effects
Ferric Compounds - chemistry
Hydrogen Peroxide - chemistry
Hydrogen Peroxide - pharmacology
Insecta - drug effects
Insecticides - chemical synthesis
Insecticides - chemistry
Insecticides - pharmacology
Iodobenzenes - chemistry
Iodobenzenes - pharmacology
Manganese - chemistry
Metalloporphyrins - chemistry
Molecular Structure
Oxidation-Reduction
Structure-Activity Relationship
Triterpenes - chemical synthesis
Triterpenes - chemistry
Triterpenes - pharmacology
title Optimization of Insecticidal Triterpene Derivatives by Biomimetic Oxidations with Hydrogen Peroxide and Iodosobenzene Catalyzed by Mn III and Fe III Porphyrin Complexes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A48%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Insecticidal%20Triterpene%20Derivatives%20by%20Biomimetic%20Oxidations%20with%20Hydrogen%20Peroxide%20and%20Iodosobenzene%20Catalyzed%20by%20Mn%20III%20and%20Fe%20III%20Porphyrin%20Complexes&rft.jtitle=Chemistry%20&%20biodiversity&rft.au=Mazoir,%20Noureddine&rft.date=2020-09&rft.volume=17&rft.issue=9&rft.spage=e2000287&rft.pages=e2000287-&rft.issn=1612-1872&rft.eissn=1612-1880&rft_id=info:doi/10.1002/cbdv.202000287&rft_dat=%3Cpubmed_cross%3E32644248%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1078-180c01e3f49aca2c52cf52e72f44e3fe35953b7a55c430c27165cab4e7d8ff4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/32644248&rfr_iscdi=true