Loading…
Alumina-Supported Ni-Au: Surface Synergistic Effects in Catalytic Hydrodechlorination
Catalytic gas‐phase hydrodechlorination (HDC) of 2,4‐dichlorophenol (2,4‐DCP) has been investigated over Ni/Al2O3 and Au/Al2O3 prepared by impregnation, and Au–Ni/Al2O3 prepared by reductive deposition of Au onto Ni. Catalyst activation by temperature‐programmed reduction is examined and the activat...
Saved in:
Published in: | ChemCatChem 2009-10, Vol.1 (2), p.270-278 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4330-ab755ceb1162cb9e39de36999545c11840efb282dd72ae48d91dcef15613fb483 |
---|---|
cites | cdi_FETCH-LOGICAL-c4330-ab755ceb1162cb9e39de36999545c11840efb282dd72ae48d91dcef15613fb483 |
container_end_page | 278 |
container_issue | 2 |
container_start_page | 270 |
container_title | ChemCatChem |
container_volume | 1 |
creator | Keane, Mark A. Gómez-Quero, Santiago Cárdenas-Lizana, Fernando Shen, Wenqin |
description | Catalytic gas‐phase hydrodechlorination (HDC) of 2,4‐dichlorophenol (2,4‐DCP) has been investigated over Ni/Al2O3 and Au/Al2O3 prepared by impregnation, and Au–Ni/Al2O3 prepared by reductive deposition of Au onto Ni. Catalyst activation by temperature‐programmed reduction is examined and the activated catalysts are characterized in terms of H2 chemisorption, XRD and TEM‐energy dispersive X‐ray (EDX) measurements. Ni/Al2O3 ( |
doi_str_mv | 10.1002/cctc.200900070 |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cctc_200900070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CCTC200900070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4330-ab755ceb1162cb9e39de36999545c11840efb282dd72ae48d91dcef15613fb483</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFavnvMHUmez-VpvJWgrliq0RfCybHZndTVNym6C5t-bUinePM0wvM_L8BByTWFCAaIbpVo1iQA4AGRwQkY0T7OQ5ZyfHvcczsmF9x8AKWdZMiKbadVtbS3DVbfbNa5FHSxtOO1ug1XnjFQYrPoa3Zv1rVXBnTGoWh_YOihkK6t-f5z32jUa1XvVuKGptU19Sc6MrDxe_c4x2dzfrYt5uHiaPRTTRahixiCUZZYkCktK00iVHBnXyFLOeRInitI8BjRllEdaZ5HEONecaoWGJillpoxzNiaTQ69yjfcOjdg5u5WuFxTEXorYSxFHKQPAD8CXrbD_Jy2KYl38ZcMDO7jA7yMr3adIs0GmeFnOBBu-jx-fZ-KV_QClgXY3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Alumina-Supported Ni-Au: Surface Synergistic Effects in Catalytic Hydrodechlorination</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Keane, Mark A. ; Gómez-Quero, Santiago ; Cárdenas-Lizana, Fernando ; Shen, Wenqin</creator><creatorcontrib>Keane, Mark A. ; Gómez-Quero, Santiago ; Cárdenas-Lizana, Fernando ; Shen, Wenqin</creatorcontrib><description>Catalytic gas‐phase hydrodechlorination (HDC) of 2,4‐dichlorophenol (2,4‐DCP) has been investigated over Ni/Al2O3 and Au/Al2O3 prepared by impregnation, and Au–Ni/Al2O3 prepared by reductive deposition of Au onto Ni. Catalyst activation by temperature‐programmed reduction is examined and the activated catalysts are characterized in terms of H2 chemisorption, XRD and TEM‐energy dispersive X‐ray (EDX) measurements. Ni/Al2O3 (<1–10 nm) and Au/Al2O3 (<1–15 nm) exhibit a relatively narrow metal size distribution while Au–Ni/Al2O3 bore larger particles (1–30 nm) with variable surface Ni/Au ratios. Au/Al2O3 exhibits low H2 uptake and low HDC activity to generate 2‐chlorophenol (2‐CP) as the sole product. H2 chemisorption on Au–Ni/Al2O3 was approximately five times lower than that recorded for Ni/Al2O3 but both catalysts delivered equivalent initial HDC activities. Ni/Al2O3 exhibits an irreversible temporal deactivation where partial dechlorination to 2‐CP is increasingly favored over full dechlorination to phenol. In contrast, thermal treatment of Au–Ni/Al2O3 in H2 after reaction elevates HDC activity with a preferential full HDC to phenol. This response is linked to a surface reconstruction resulting in a more homogeneous combination of Ni and Au. This result was also achieved by a direct treatment of Au–Ni/Al2O3 with HCl. A parallel/ consecutive kinetic model is used to quantify the catalytic HDC response.
Set your phases to “gas”: The intro‐ duction of Au to Ni/Al2O3 (see representative TEM) by reductive deposition resulted in a significant promotion of the gas‐phase catalytic hydrodechlorination of 2,4‐dichlorophenol to phenol, a response that can be attributed to surface Au–Ni synergy leading to a more effective CCl bond scission.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.200900070</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>gas-phase reactions ; gold ; heterogeneous catalysis ; nickel ; supported catalysts</subject><ispartof>ChemCatChem, 2009-10, Vol.1 (2), p.270-278</ispartof><rights>Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4330-ab755ceb1162cb9e39de36999545c11840efb282dd72ae48d91dcef15613fb483</citedby><cites>FETCH-LOGICAL-c4330-ab755ceb1162cb9e39de36999545c11840efb282dd72ae48d91dcef15613fb483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Keane, Mark A.</creatorcontrib><creatorcontrib>Gómez-Quero, Santiago</creatorcontrib><creatorcontrib>Cárdenas-Lizana, Fernando</creatorcontrib><creatorcontrib>Shen, Wenqin</creatorcontrib><title>Alumina-Supported Ni-Au: Surface Synergistic Effects in Catalytic Hydrodechlorination</title><title>ChemCatChem</title><addtitle>ChemCatChem</addtitle><description>Catalytic gas‐phase hydrodechlorination (HDC) of 2,4‐dichlorophenol (2,4‐DCP) has been investigated over Ni/Al2O3 and Au/Al2O3 prepared by impregnation, and Au–Ni/Al2O3 prepared by reductive deposition of Au onto Ni. Catalyst activation by temperature‐programmed reduction is examined and the activated catalysts are characterized in terms of H2 chemisorption, XRD and TEM‐energy dispersive X‐ray (EDX) measurements. Ni/Al2O3 (<1–10 nm) and Au/Al2O3 (<1–15 nm) exhibit a relatively narrow metal size distribution while Au–Ni/Al2O3 bore larger particles (1–30 nm) with variable surface Ni/Au ratios. Au/Al2O3 exhibits low H2 uptake and low HDC activity to generate 2‐chlorophenol (2‐CP) as the sole product. H2 chemisorption on Au–Ni/Al2O3 was approximately five times lower than that recorded for Ni/Al2O3 but both catalysts delivered equivalent initial HDC activities. Ni/Al2O3 exhibits an irreversible temporal deactivation where partial dechlorination to 2‐CP is increasingly favored over full dechlorination to phenol. In contrast, thermal treatment of Au–Ni/Al2O3 in H2 after reaction elevates HDC activity with a preferential full HDC to phenol. This response is linked to a surface reconstruction resulting in a more homogeneous combination of Ni and Au. This result was also achieved by a direct treatment of Au–Ni/Al2O3 with HCl. A parallel/ consecutive kinetic model is used to quantify the catalytic HDC response.
Set your phases to “gas”: The intro‐ duction of Au to Ni/Al2O3 (see representative TEM) by reductive deposition resulted in a significant promotion of the gas‐phase catalytic hydrodechlorination of 2,4‐dichlorophenol to phenol, a response that can be attributed to surface Au–Ni synergy leading to a more effective CCl bond scission.</description><subject>gas-phase reactions</subject><subject>gold</subject><subject>heterogeneous catalysis</subject><subject>nickel</subject><subject>supported catalysts</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFavnvMHUmez-VpvJWgrliq0RfCybHZndTVNym6C5t-bUinePM0wvM_L8BByTWFCAaIbpVo1iQA4AGRwQkY0T7OQ5ZyfHvcczsmF9x8AKWdZMiKbadVtbS3DVbfbNa5FHSxtOO1ug1XnjFQYrPoa3Zv1rVXBnTGoWh_YOihkK6t-f5z32jUa1XvVuKGptU19Sc6MrDxe_c4x2dzfrYt5uHiaPRTTRahixiCUZZYkCktK00iVHBnXyFLOeRInitI8BjRllEdaZ5HEONecaoWGJillpoxzNiaTQ69yjfcOjdg5u5WuFxTEXorYSxFHKQPAD8CXrbD_Jy2KYl38ZcMDO7jA7yMr3adIs0GmeFnOBBu-jx-fZ-KV_QClgXY3</recordid><startdate>20091005</startdate><enddate>20091005</enddate><creator>Keane, Mark A.</creator><creator>Gómez-Quero, Santiago</creator><creator>Cárdenas-Lizana, Fernando</creator><creator>Shen, Wenqin</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20091005</creationdate><title>Alumina-Supported Ni-Au: Surface Synergistic Effects in Catalytic Hydrodechlorination</title><author>Keane, Mark A. ; Gómez-Quero, Santiago ; Cárdenas-Lizana, Fernando ; Shen, Wenqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4330-ab755ceb1162cb9e39de36999545c11840efb282dd72ae48d91dcef15613fb483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>gas-phase reactions</topic><topic>gold</topic><topic>heterogeneous catalysis</topic><topic>nickel</topic><topic>supported catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keane, Mark A.</creatorcontrib><creatorcontrib>Gómez-Quero, Santiago</creatorcontrib><creatorcontrib>Cárdenas-Lizana, Fernando</creatorcontrib><creatorcontrib>Shen, Wenqin</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keane, Mark A.</au><au>Gómez-Quero, Santiago</au><au>Cárdenas-Lizana, Fernando</au><au>Shen, Wenqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alumina-Supported Ni-Au: Surface Synergistic Effects in Catalytic Hydrodechlorination</atitle><jtitle>ChemCatChem</jtitle><addtitle>ChemCatChem</addtitle><date>2009-10-05</date><risdate>2009</risdate><volume>1</volume><issue>2</issue><spage>270</spage><epage>278</epage><pages>270-278</pages><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Catalytic gas‐phase hydrodechlorination (HDC) of 2,4‐dichlorophenol (2,4‐DCP) has been investigated over Ni/Al2O3 and Au/Al2O3 prepared by impregnation, and Au–Ni/Al2O3 prepared by reductive deposition of Au onto Ni. Catalyst activation by temperature‐programmed reduction is examined and the activated catalysts are characterized in terms of H2 chemisorption, XRD and TEM‐energy dispersive X‐ray (EDX) measurements. Ni/Al2O3 (<1–10 nm) and Au/Al2O3 (<1–15 nm) exhibit a relatively narrow metal size distribution while Au–Ni/Al2O3 bore larger particles (1–30 nm) with variable surface Ni/Au ratios. Au/Al2O3 exhibits low H2 uptake and low HDC activity to generate 2‐chlorophenol (2‐CP) as the sole product. H2 chemisorption on Au–Ni/Al2O3 was approximately five times lower than that recorded for Ni/Al2O3 but both catalysts delivered equivalent initial HDC activities. Ni/Al2O3 exhibits an irreversible temporal deactivation where partial dechlorination to 2‐CP is increasingly favored over full dechlorination to phenol. In contrast, thermal treatment of Au–Ni/Al2O3 in H2 after reaction elevates HDC activity with a preferential full HDC to phenol. This response is linked to a surface reconstruction resulting in a more homogeneous combination of Ni and Au. This result was also achieved by a direct treatment of Au–Ni/Al2O3 with HCl. A parallel/ consecutive kinetic model is used to quantify the catalytic HDC response.
Set your phases to “gas”: The intro‐ duction of Au to Ni/Al2O3 (see representative TEM) by reductive deposition resulted in a significant promotion of the gas‐phase catalytic hydrodechlorination of 2,4‐dichlorophenol to phenol, a response that can be attributed to surface Au–Ni synergy leading to a more effective CCl bond scission.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/cctc.200900070</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1867-3880 |
ispartof | ChemCatChem, 2009-10, Vol.1 (2), p.270-278 |
issn | 1867-3880 1867-3899 |
language | eng |
recordid | cdi_crossref_primary_10_1002_cctc_200900070 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | gas-phase reactions gold heterogeneous catalysis nickel supported catalysts |
title | Alumina-Supported Ni-Au: Surface Synergistic Effects in Catalytic Hydrodechlorination |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alumina-Supported%20Ni-Au:%20Surface%20Synergistic%20Effects%20in%20Catalytic%20Hydrodechlorination&rft.jtitle=ChemCatChem&rft.au=Keane,%20Mark%E2%80%85A.&rft.date=2009-10-05&rft.volume=1&rft.issue=2&rft.spage=270&rft.epage=278&rft.pages=270-278&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.200900070&rft_dat=%3Cwiley_cross%3ECCTC200900070%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4330-ab755ceb1162cb9e39de36999545c11840efb282dd72ae48d91dcef15613fb483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |