Loading…

Efficient Bifunctional Oxygen Electrocatalysts for Rechargeable Zinc–Air Battery: Fe 3 O 4 /N−C Nanoflowers Derived from Aromatic Polyamide

The development of low‐cost, high‐activity bifunctional oxygen electrocatalysts for rechargeable zinc–air batteries is highly desired. Herein, N‐doped carbon nanoflower embedded Fe 3 O 4 nanoparticles were prepared using a simple and scalable method. The obtained electrocatalyst exhibits excellent a...

Full description

Saved in:
Bibliographic Details
Published in:ChemCatChem 2022-02, Vol.14 (4)
Main Authors: Liu, Yanping, Qiao, Bin, Jia, Nan, Shi, Shufeng, Chen, Xinbing, An, Zhongwei, Chen, Pei
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c843-4e4d6ad268ead24b314cd9d8fca9ad035d672544ccac79b9f0c13c3af3e0be643
cites cdi_FETCH-LOGICAL-c843-4e4d6ad268ead24b314cd9d8fca9ad035d672544ccac79b9f0c13c3af3e0be643
container_end_page
container_issue 4
container_start_page
container_title ChemCatChem
container_volume 14
creator Liu, Yanping
Qiao, Bin
Jia, Nan
Shi, Shufeng
Chen, Xinbing
An, Zhongwei
Chen, Pei
description The development of low‐cost, high‐activity bifunctional oxygen electrocatalysts for rechargeable zinc–air batteries is highly desired. Herein, N‐doped carbon nanoflower embedded Fe 3 O 4 nanoparticles were prepared using a simple and scalable method. The obtained electrocatalyst exhibits excellent activity and stability toward both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), as well as a small potential gap of 0.72 V between the half‐wave potential of ORR and the onset potential of OER potential, which is superior to the most previously reported bifunctional ORR/OER catalysts. The corresponding zinc–air battery exhibits good charged/discharge cycle performance as well as excellent discharge property, with a power density of 136.8 mW cm −2 at 200 mA cm −2 outperforming commercial Pt/C (96.5mW cm −2 ). Experiment results and density functional theory demonstrate that the high catalysis activity is mainly caused by the surface oxygen vacancy of Fe 3 O 4 nanoparticles. This study sheds new light on the ORR/OER bifunctional electrocatalyst design.
doi_str_mv 10.1002/cctc.202101523
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cctc_202101523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_cctc_202101523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c843-4e4d6ad268ead24b314cd9d8fca9ad035d672544ccac79b9f0c13c3af3e0be643</originalsourceid><addsrcrecordid>eNo9kL1OwzAURi0EEqWwMt8XSGvHzh9bW1pAqlqEOrFEzs11MUoT5JifbIxsSPCGfRKoQF3O901nOIydCz4QnIdDRI-DkIeCiyiUB6wn0jgJZJplh_uf8mN20raPnMeZTKIe-5waY9FS7WFszXON3ja1rmD51q2phmlF6F2D2uuqa30LpnFwR_ig3Zp0URHc2xq3798j62CsvSfXXcCMQMISFAwX24-vCSx03ZiqeSXXwiU5-0IlGNdsYPQL7S3CbVN1emNLOmVHRlctnf1vn61m09XkOpgvr24mo3mAqZKBIlXGugzjlH6pCikUllmZGtSZLrmMyjgJI6UQNSZZkRmOQqLURhIvKFayzwZ_WnRN2zoy-ZOzG-26XPB8VzPf1cz3NeUPEcdszQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient Bifunctional Oxygen Electrocatalysts for Rechargeable Zinc–Air Battery: Fe 3 O 4 /N−C Nanoflowers Derived from Aromatic Polyamide</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Liu, Yanping ; Qiao, Bin ; Jia, Nan ; Shi, Shufeng ; Chen, Xinbing ; An, Zhongwei ; Chen, Pei</creator><creatorcontrib>Liu, Yanping ; Qiao, Bin ; Jia, Nan ; Shi, Shufeng ; Chen, Xinbing ; An, Zhongwei ; Chen, Pei</creatorcontrib><description>The development of low‐cost, high‐activity bifunctional oxygen electrocatalysts for rechargeable zinc–air batteries is highly desired. Herein, N‐doped carbon nanoflower embedded Fe 3 O 4 nanoparticles were prepared using a simple and scalable method. The obtained electrocatalyst exhibits excellent activity and stability toward both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), as well as a small potential gap of 0.72 V between the half‐wave potential of ORR and the onset potential of OER potential, which is superior to the most previously reported bifunctional ORR/OER catalysts. The corresponding zinc–air battery exhibits good charged/discharge cycle performance as well as excellent discharge property, with a power density of 136.8 mW cm −2 at 200 mA cm −2 outperforming commercial Pt/C (96.5mW cm −2 ). Experiment results and density functional theory demonstrate that the high catalysis activity is mainly caused by the surface oxygen vacancy of Fe 3 O 4 nanoparticles. This study sheds new light on the ORR/OER bifunctional electrocatalyst design.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.202101523</identifier><language>eng</language><ispartof>ChemCatChem, 2022-02, Vol.14 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c843-4e4d6ad268ead24b314cd9d8fca9ad035d672544ccac79b9f0c13c3af3e0be643</citedby><cites>FETCH-LOGICAL-c843-4e4d6ad268ead24b314cd9d8fca9ad035d672544ccac79b9f0c13c3af3e0be643</cites><orcidid>0000-0002-4317-3361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Yanping</creatorcontrib><creatorcontrib>Qiao, Bin</creatorcontrib><creatorcontrib>Jia, Nan</creatorcontrib><creatorcontrib>Shi, Shufeng</creatorcontrib><creatorcontrib>Chen, Xinbing</creatorcontrib><creatorcontrib>An, Zhongwei</creatorcontrib><creatorcontrib>Chen, Pei</creatorcontrib><title>Efficient Bifunctional Oxygen Electrocatalysts for Rechargeable Zinc–Air Battery: Fe 3 O 4 /N−C Nanoflowers Derived from Aromatic Polyamide</title><title>ChemCatChem</title><description>The development of low‐cost, high‐activity bifunctional oxygen electrocatalysts for rechargeable zinc–air batteries is highly desired. Herein, N‐doped carbon nanoflower embedded Fe 3 O 4 nanoparticles were prepared using a simple and scalable method. The obtained electrocatalyst exhibits excellent activity and stability toward both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), as well as a small potential gap of 0.72 V between the half‐wave potential of ORR and the onset potential of OER potential, which is superior to the most previously reported bifunctional ORR/OER catalysts. The corresponding zinc–air battery exhibits good charged/discharge cycle performance as well as excellent discharge property, with a power density of 136.8 mW cm −2 at 200 mA cm −2 outperforming commercial Pt/C (96.5mW cm −2 ). Experiment results and density functional theory demonstrate that the high catalysis activity is mainly caused by the surface oxygen vacancy of Fe 3 O 4 nanoparticles. This study sheds new light on the ORR/OER bifunctional electrocatalyst design.</description><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAURi0EEqWwMt8XSGvHzh9bW1pAqlqEOrFEzs11MUoT5JifbIxsSPCGfRKoQF3O901nOIydCz4QnIdDRI-DkIeCiyiUB6wn0jgJZJplh_uf8mN20raPnMeZTKIe-5waY9FS7WFszXON3ja1rmD51q2phmlF6F2D2uuqa30LpnFwR_ig3Zp0URHc2xq3798j62CsvSfXXcCMQMISFAwX24-vCSx03ZiqeSXXwiU5-0IlGNdsYPQL7S3CbVN1emNLOmVHRlctnf1vn61m09XkOpgvr24mo3mAqZKBIlXGugzjlH6pCikUllmZGtSZLrmMyjgJI6UQNSZZkRmOQqLURhIvKFayzwZ_WnRN2zoy-ZOzG-26XPB8VzPf1cz3NeUPEcdszQ</recordid><startdate>20220218</startdate><enddate>20220218</enddate><creator>Liu, Yanping</creator><creator>Qiao, Bin</creator><creator>Jia, Nan</creator><creator>Shi, Shufeng</creator><creator>Chen, Xinbing</creator><creator>An, Zhongwei</creator><creator>Chen, Pei</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4317-3361</orcidid></search><sort><creationdate>20220218</creationdate><title>Efficient Bifunctional Oxygen Electrocatalysts for Rechargeable Zinc–Air Battery: Fe 3 O 4 /N−C Nanoflowers Derived from Aromatic Polyamide</title><author>Liu, Yanping ; Qiao, Bin ; Jia, Nan ; Shi, Shufeng ; Chen, Xinbing ; An, Zhongwei ; Chen, Pei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c843-4e4d6ad268ead24b314cd9d8fca9ad035d672544ccac79b9f0c13c3af3e0be643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yanping</creatorcontrib><creatorcontrib>Qiao, Bin</creatorcontrib><creatorcontrib>Jia, Nan</creatorcontrib><creatorcontrib>Shi, Shufeng</creatorcontrib><creatorcontrib>Chen, Xinbing</creatorcontrib><creatorcontrib>An, Zhongwei</creatorcontrib><creatorcontrib>Chen, Pei</creatorcontrib><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yanping</au><au>Qiao, Bin</au><au>Jia, Nan</au><au>Shi, Shufeng</au><au>Chen, Xinbing</au><au>An, Zhongwei</au><au>Chen, Pei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Bifunctional Oxygen Electrocatalysts for Rechargeable Zinc–Air Battery: Fe 3 O 4 /N−C Nanoflowers Derived from Aromatic Polyamide</atitle><jtitle>ChemCatChem</jtitle><date>2022-02-18</date><risdate>2022</risdate><volume>14</volume><issue>4</issue><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>The development of low‐cost, high‐activity bifunctional oxygen electrocatalysts for rechargeable zinc–air batteries is highly desired. Herein, N‐doped carbon nanoflower embedded Fe 3 O 4 nanoparticles were prepared using a simple and scalable method. The obtained electrocatalyst exhibits excellent activity and stability toward both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), as well as a small potential gap of 0.72 V between the half‐wave potential of ORR and the onset potential of OER potential, which is superior to the most previously reported bifunctional ORR/OER catalysts. The corresponding zinc–air battery exhibits good charged/discharge cycle performance as well as excellent discharge property, with a power density of 136.8 mW cm −2 at 200 mA cm −2 outperforming commercial Pt/C (96.5mW cm −2 ). Experiment results and density functional theory demonstrate that the high catalysis activity is mainly caused by the surface oxygen vacancy of Fe 3 O 4 nanoparticles. This study sheds new light on the ORR/OER bifunctional electrocatalyst design.</abstract><doi>10.1002/cctc.202101523</doi><orcidid>https://orcid.org/0000-0002-4317-3361</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2022-02, Vol.14 (4)
issn 1867-3880
1867-3899
language eng
recordid cdi_crossref_primary_10_1002_cctc_202101523
source Wiley-Blackwell Read & Publish Collection
title Efficient Bifunctional Oxygen Electrocatalysts for Rechargeable Zinc–Air Battery: Fe 3 O 4 /N−C Nanoflowers Derived from Aromatic Polyamide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Bifunctional%20Oxygen%20Electrocatalysts%20for%20Rechargeable%20Zinc%E2%80%93Air%20Battery:%20Fe%203%20O%204%20/N%E2%88%92C%20Nanoflowers%20Derived%20from%20Aromatic%20Polyamide&rft.jtitle=ChemCatChem&rft.au=Liu,%20Yanping&rft.date=2022-02-18&rft.volume=14&rft.issue=4&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.202101523&rft_dat=%3Ccrossref%3E10_1002_cctc_202101523%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c843-4e4d6ad268ead24b314cd9d8fca9ad035d672544ccac79b9f0c13c3af3e0be643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true