Loading…
In situ Polymerized FDU‐12/Poly(methyl methacrylate) and FDU‐12/polyamide 6 Nanocomposites for Cd 2+ Adsorption
Large‐pore mesoporous silica FDU‐12 was synthesized and functionalized with silane coupling agents bearing methacrylate and diamino groups. Diamino‐functionalized FDU‐12/polyamide 6 and methacrylate‐functionalized FDU‐12/poly(methyl methacrylate) nanocomposites were prepared via in situ polymerizati...
Saved in:
Published in: | Chemical engineering & technology 2021-03, Vol.44 (3), p.431-440 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Large‐pore mesoporous silica FDU‐12 was synthesized and functionalized with silane coupling agents bearing methacrylate and diamino groups. Diamino‐functionalized FDU‐12/polyamide 6 and methacrylate‐functionalized FDU‐12/poly(methyl methacrylate) nanocomposites were prepared via in situ polymerization approach. These two synthesized nanocomposites were used as potential adsorbents for the removal of Cd
2+
cations from aqueous media. The impact of different adsorption factors affecting the adsorption process was investigated, and isotherm and kinetic studies were conducted to gain a better understanding of adsorption mechanisms involved in the removal process of Cd
2+
by the adsorbents. Experimental and computational results demonstrated that the adsorbents have acceptable performance for Cd
2+
uptake. |
---|---|
ISSN: | 0930-7516 1521-4125 |
DOI: | 10.1002/ceat.202000298 |