Loading…

07.16: On the distortional buckling capacity of pallet rack uprights

ABSTRACT In nowadays commercial environment, the storage of goods on standardized pallets represent the standard for many companies. As a direct consequence, pallet rack storage systems have become an essential part in their intralogistics. Usual load bearing structures of storage systems consist of...

Full description

Saved in:
Bibliographic Details
Published in:ce/papers 2017-09, Vol.1 (2-3), p.1627-1636
Main Authors: Crisan, Andrei, Kraus, Matthias, Handabut, Andreea
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c716-ce01f9029373316bfa4cc749e9b1282d9258ce79349c4f01c3923de7bf9372c63
container_end_page 1636
container_issue 2-3
container_start_page 1627
container_title ce/papers
container_volume 1
creator Crisan, Andrei
Kraus, Matthias
Handabut, Andreea
description ABSTRACT In nowadays commercial environment, the storage of goods on standardized pallets represent the standard for many companies. As a direct consequence, pallet rack storage systems have become an essential part in their intralogistics. Usual load bearing structures of storage systems consist of longitudinal and transversal frames. In longitudinal direction, along the aisle, the vertical distance between beams is varied function requirements. In transversal direction, usually the frame is a truss structure composed of uprights as chords, diagonals and struts. For the load bearing structure of pallet rack systems, the uprights represent the main elements. Following a long optimization process to increase the load bearing capacity of cold formed elements, the critical load associated with local buckling was increased by introducing folds acting as longitudinal stiffeners. This approach solved local buckling problems but created the premises for another sectional instability, i.e. distortional buckling. The stability issue is further accentuated by arrays of holes along the length of the uprights. These holes enable the user to customize the shelf height, depending on storage requirements Based on an extensive experimental program developed within the ACTEX laboratory (https://erris.gov.ro/ACTEX), the present paper presents the findings of a numerical study conducted for a heavy load pallet rack upright profile. The aim is the identification of stabilizing stiffness needed to prevent the development of distortional buckling. Based on the numerical results, a series of preliminary solutions are proposed to restrain distortional buckling and improve the cross sectional stability of pallet rack uprights.
doi_str_mv 10.1002/cepa.206
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cepa_206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CEPA206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c716-ce01f9029373316bfa4cc749e9b1282d9258ce79349c4f01c3923de7bf9372c63</originalsourceid><addsrcrecordid>eNp1jz1PwzAURS0EElWpxE_wyJLwbCdxzFaF8iFVKkN3y3mxW9OQRHEqlH9PojKwML07nHufDiH3DGIGwB_RdibmkF2RBU9BRRJkev0n35JVCJ8AIDhjOecL8gwyZtkT3TV0OFpa-TC0_eDbxtS0POOp9s2BoukM-mGkraOdqWs70N7giZ673h-OQ7gjN87Uwa5-75LsXzb74i3a7l7fi_U2QsmyCC0wp4ArIYVgWelMgigTZVXJeM4rxdMcrVQiUZg4YCgUF5WVpZsaHDOxJA-XWezbEHrr9PT_y_SjZqBnfz3768l_QqML-u1rO_7L6WLzsZ75H5e9WpM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>07.16: On the distortional buckling capacity of pallet rack uprights</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Crisan, Andrei ; Kraus, Matthias ; Handabut, Andreea</creator><creatorcontrib>Crisan, Andrei ; Kraus, Matthias ; Handabut, Andreea</creatorcontrib><description>ABSTRACT In nowadays commercial environment, the storage of goods on standardized pallets represent the standard for many companies. As a direct consequence, pallet rack storage systems have become an essential part in their intralogistics. Usual load bearing structures of storage systems consist of longitudinal and transversal frames. In longitudinal direction, along the aisle, the vertical distance between beams is varied function requirements. In transversal direction, usually the frame is a truss structure composed of uprights as chords, diagonals and struts. For the load bearing structure of pallet rack systems, the uprights represent the main elements. Following a long optimization process to increase the load bearing capacity of cold formed elements, the critical load associated with local buckling was increased by introducing folds acting as longitudinal stiffeners. This approach solved local buckling problems but created the premises for another sectional instability, i.e. distortional buckling. The stability issue is further accentuated by arrays of holes along the length of the uprights. These holes enable the user to customize the shelf height, depending on storage requirements Based on an extensive experimental program developed within the ACTEX laboratory (https://erris.gov.ro/ACTEX), the present paper presents the findings of a numerical study conducted for a heavy load pallet rack upright profile. The aim is the identification of stabilizing stiffness needed to prevent the development of distortional buckling. Based on the numerical results, a series of preliminary solutions are proposed to restrain distortional buckling and improve the cross sectional stability of pallet rack uprights.</description><identifier>ISSN: 2509-7075</identifier><identifier>EISSN: 2509-7075</identifier><identifier>DOI: 10.1002/cepa.206</identifier><language>eng</language><subject>distortional buckling ; global bucking ; pallet rack uprights ; warping</subject><ispartof>ce/papers, 2017-09, Vol.1 (2-3), p.1627-1636</ispartof><rights>Ernst &amp; Sohn Verlag für Architektur und technische Wissenschaften GmbH &amp; Co. KG, Berlin</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c716-ce01f9029373316bfa4cc749e9b1282d9258ce79349c4f01c3923de7bf9372c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Crisan, Andrei</creatorcontrib><creatorcontrib>Kraus, Matthias</creatorcontrib><creatorcontrib>Handabut, Andreea</creatorcontrib><title>07.16: On the distortional buckling capacity of pallet rack uprights</title><title>ce/papers</title><description>ABSTRACT In nowadays commercial environment, the storage of goods on standardized pallets represent the standard for many companies. As a direct consequence, pallet rack storage systems have become an essential part in their intralogistics. Usual load bearing structures of storage systems consist of longitudinal and transversal frames. In longitudinal direction, along the aisle, the vertical distance between beams is varied function requirements. In transversal direction, usually the frame is a truss structure composed of uprights as chords, diagonals and struts. For the load bearing structure of pallet rack systems, the uprights represent the main elements. Following a long optimization process to increase the load bearing capacity of cold formed elements, the critical load associated with local buckling was increased by introducing folds acting as longitudinal stiffeners. This approach solved local buckling problems but created the premises for another sectional instability, i.e. distortional buckling. The stability issue is further accentuated by arrays of holes along the length of the uprights. These holes enable the user to customize the shelf height, depending on storage requirements Based on an extensive experimental program developed within the ACTEX laboratory (https://erris.gov.ro/ACTEX), the present paper presents the findings of a numerical study conducted for a heavy load pallet rack upright profile. The aim is the identification of stabilizing stiffness needed to prevent the development of distortional buckling. Based on the numerical results, a series of preliminary solutions are proposed to restrain distortional buckling and improve the cross sectional stability of pallet rack uprights.</description><subject>distortional buckling</subject><subject>global bucking</subject><subject>pallet rack uprights</subject><subject>warping</subject><issn>2509-7075</issn><issn>2509-7075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PwzAURS0EElWpxE_wyJLwbCdxzFaF8iFVKkN3y3mxW9OQRHEqlH9PojKwML07nHufDiH3DGIGwB_RdibmkF2RBU9BRRJkev0n35JVCJ8AIDhjOecL8gwyZtkT3TV0OFpa-TC0_eDbxtS0POOp9s2BoukM-mGkraOdqWs70N7giZ673h-OQ7gjN87Uwa5-75LsXzb74i3a7l7fi_U2QsmyCC0wp4ArIYVgWelMgigTZVXJeM4rxdMcrVQiUZg4YCgUF5WVpZsaHDOxJA-XWezbEHrr9PT_y_SjZqBnfz3768l_QqML-u1rO_7L6WLzsZ75H5e9WpM</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Crisan, Andrei</creator><creator>Kraus, Matthias</creator><creator>Handabut, Andreea</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201709</creationdate><title>07.16: On the distortional buckling capacity of pallet rack uprights</title><author>Crisan, Andrei ; Kraus, Matthias ; Handabut, Andreea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c716-ce01f9029373316bfa4cc749e9b1282d9258ce79349c4f01c3923de7bf9372c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>distortional buckling</topic><topic>global bucking</topic><topic>pallet rack uprights</topic><topic>warping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crisan, Andrei</creatorcontrib><creatorcontrib>Kraus, Matthias</creatorcontrib><creatorcontrib>Handabut, Andreea</creatorcontrib><collection>CrossRef</collection><jtitle>ce/papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crisan, Andrei</au><au>Kraus, Matthias</au><au>Handabut, Andreea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>07.16: On the distortional buckling capacity of pallet rack uprights</atitle><jtitle>ce/papers</jtitle><date>2017-09</date><risdate>2017</risdate><volume>1</volume><issue>2-3</issue><spage>1627</spage><epage>1636</epage><pages>1627-1636</pages><issn>2509-7075</issn><eissn>2509-7075</eissn><abstract>ABSTRACT In nowadays commercial environment, the storage of goods on standardized pallets represent the standard for many companies. As a direct consequence, pallet rack storage systems have become an essential part in their intralogistics. Usual load bearing structures of storage systems consist of longitudinal and transversal frames. In longitudinal direction, along the aisle, the vertical distance between beams is varied function requirements. In transversal direction, usually the frame is a truss structure composed of uprights as chords, diagonals and struts. For the load bearing structure of pallet rack systems, the uprights represent the main elements. Following a long optimization process to increase the load bearing capacity of cold formed elements, the critical load associated with local buckling was increased by introducing folds acting as longitudinal stiffeners. This approach solved local buckling problems but created the premises for another sectional instability, i.e. distortional buckling. The stability issue is further accentuated by arrays of holes along the length of the uprights. These holes enable the user to customize the shelf height, depending on storage requirements Based on an extensive experimental program developed within the ACTEX laboratory (https://erris.gov.ro/ACTEX), the present paper presents the findings of a numerical study conducted for a heavy load pallet rack upright profile. The aim is the identification of stabilizing stiffness needed to prevent the development of distortional buckling. Based on the numerical results, a series of preliminary solutions are proposed to restrain distortional buckling and improve the cross sectional stability of pallet rack uprights.</abstract><doi>10.1002/cepa.206</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2509-7075
ispartof ce/papers, 2017-09, Vol.1 (2-3), p.1627-1636
issn 2509-7075
2509-7075
language eng
recordid cdi_crossref_primary_10_1002_cepa_206
source Wiley-Blackwell Read & Publish Collection
subjects distortional buckling
global bucking
pallet rack uprights
warping
title 07.16: On the distortional buckling capacity of pallet rack uprights
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A53%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=07.16:%20On%20the%20distortional%20buckling%20capacity%20of%20pallet%20rack%20uprights&rft.jtitle=ce/papers&rft.au=Crisan,%20Andrei&rft.date=2017-09&rft.volume=1&rft.issue=2-3&rft.spage=1627&rft.epage=1636&rft.pages=1627-1636&rft.issn=2509-7075&rft.eissn=2509-7075&rft_id=info:doi/10.1002/cepa.206&rft_dat=%3Cwiley_cross%3ECEPA206%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c716-ce01f9029373316bfa4cc749e9b1282d9258ce79349c4f01c3923de7bf9372c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true