Loading…

3D Carbon Foam Supported Edge-Rich N-Doped MoS 2 Nanoflakes for Enhanced Electrocatalytic Hydrogen Evolution

Molybdenum disulfide (MoS ) is one of the most promising alternatives to the Pt-based electrocatalysts for the hydrogen evolution reaction (HER). However, its performance is currently limited by insufficient active edge sites and poor electron transport. Hence, enormous efforts have been devoted to...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal 2020-03, Vol.26 (18), p.4150-4156
Main Authors: Jia, Xueying, Ren, Hongyuan, Hu, Hanbin, Song, Yu-Fei
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1075-bed8833ccc9ef257c8baebaab2a0fd2a025e0965f340c061e22fceac00a28ce03
cites cdi_FETCH-LOGICAL-c1075-bed8833ccc9ef257c8baebaab2a0fd2a025e0965f340c061e22fceac00a28ce03
container_end_page 4156
container_issue 18
container_start_page 4150
container_title Chemistry : a European journal
container_volume 26
creator Jia, Xueying
Ren, Hongyuan
Hu, Hanbin
Song, Yu-Fei
description Molybdenum disulfide (MoS ) is one of the most promising alternatives to the Pt-based electrocatalysts for the hydrogen evolution reaction (HER). However, its performance is currently limited by insufficient active edge sites and poor electron transport. Hence, enormous efforts have been devoted to constructing more active edge sites and improving conductivity to obtain enhanced electrocatalytic performance. Herein, the 3D carbon foam (denoted as CF) supported edge-rich N-doped MoS nanoflakes were successfully fabricated by using the commercially available polyurethane foam (PU) as the 3D substrate and PMo O clusters (denoted as PMo ) as the Mo source through redox polymerization, followed by sulfurization. Owing to the uniform distribution of nanoscale Mo sources and 3D carbon foam substrate, the as-prepared MoS -CF composite possessed well-exposed active edge sites and enhanced electrical conductivity. Systematic investigation demonstrated that the MoS -CF composite showed high HER performance with a low overpotential of 92 mV in 1.0 m KOH and 155 mV in 0.5 m H SO at a current density of 10 mA cm . This work offers a new pathway for the rational design of MoS -based HER electrocatalysts.
doi_str_mv 10.1002/chem.201904669
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_chem_201904669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31750955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1075-bed8833ccc9ef257c8baebaab2a0fd2a025e0965f340c061e22fceac00a28ce03</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EoqVw5Yj8B1LWdp3HEfVBkUqRKJwjZ7NuA0kcOSlS_z2pCr3sSKuZkeZj7F7AWADIR9xRNZYgEpiEYXLBhkJLEago1JdsCMkkCkKtkgG7adsvAEhCpa7ZQIlIQ6L1kJVqxqfGZ67mC2cqvtk3jfMd5Xyebyl4L3DH18HMNf3n1W245GtTO1uab2q5dZ7P652p8egvCTvv0HSmPHQF8uUh925LNZ__uHLfFa6-ZVfWlC3d_emIfS7mH9NlsHp7fpk-rQIUEOkgozyOlULEhKzUEcaZocyYTBqweX-kpn6JtmoCCKEgKS2SQQAjYyRQIzY-9aJ3bevJpo0vKuMPqYD0iC09YkvP2PrAwynQ7LOK8rP9n5P6Bd7Dacw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3D Carbon Foam Supported Edge-Rich N-Doped MoS 2 Nanoflakes for Enhanced Electrocatalytic Hydrogen Evolution</title><source>Wiley</source><creator>Jia, Xueying ; Ren, Hongyuan ; Hu, Hanbin ; Song, Yu-Fei</creator><creatorcontrib>Jia, Xueying ; Ren, Hongyuan ; Hu, Hanbin ; Song, Yu-Fei</creatorcontrib><description>Molybdenum disulfide (MoS ) is one of the most promising alternatives to the Pt-based electrocatalysts for the hydrogen evolution reaction (HER). However, its performance is currently limited by insufficient active edge sites and poor electron transport. Hence, enormous efforts have been devoted to constructing more active edge sites and improving conductivity to obtain enhanced electrocatalytic performance. Herein, the 3D carbon foam (denoted as CF) supported edge-rich N-doped MoS nanoflakes were successfully fabricated by using the commercially available polyurethane foam (PU) as the 3D substrate and PMo O clusters (denoted as PMo ) as the Mo source through redox polymerization, followed by sulfurization. Owing to the uniform distribution of nanoscale Mo sources and 3D carbon foam substrate, the as-prepared MoS -CF composite possessed well-exposed active edge sites and enhanced electrical conductivity. Systematic investigation demonstrated that the MoS -CF composite showed high HER performance with a low overpotential of 92 mV in 1.0 m KOH and 155 mV in 0.5 m H SO at a current density of 10 mA cm . This work offers a new pathway for the rational design of MoS -based HER electrocatalysts.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201904669</identifier><identifier>PMID: 31750955</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Chemistry : a European journal, 2020-03, Vol.26 (18), p.4150-4156</ispartof><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1075-bed8833ccc9ef257c8baebaab2a0fd2a025e0965f340c061e22fceac00a28ce03</citedby><cites>FETCH-LOGICAL-c1075-bed8833ccc9ef257c8baebaab2a0fd2a025e0965f340c061e22fceac00a28ce03</cites><orcidid>0000-0003-1309-0626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31750955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Xueying</creatorcontrib><creatorcontrib>Ren, Hongyuan</creatorcontrib><creatorcontrib>Hu, Hanbin</creatorcontrib><creatorcontrib>Song, Yu-Fei</creatorcontrib><title>3D Carbon Foam Supported Edge-Rich N-Doped MoS 2 Nanoflakes for Enhanced Electrocatalytic Hydrogen Evolution</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Molybdenum disulfide (MoS ) is one of the most promising alternatives to the Pt-based electrocatalysts for the hydrogen evolution reaction (HER). However, its performance is currently limited by insufficient active edge sites and poor electron transport. Hence, enormous efforts have been devoted to constructing more active edge sites and improving conductivity to obtain enhanced electrocatalytic performance. Herein, the 3D carbon foam (denoted as CF) supported edge-rich N-doped MoS nanoflakes were successfully fabricated by using the commercially available polyurethane foam (PU) as the 3D substrate and PMo O clusters (denoted as PMo ) as the Mo source through redox polymerization, followed by sulfurization. Owing to the uniform distribution of nanoscale Mo sources and 3D carbon foam substrate, the as-prepared MoS -CF composite possessed well-exposed active edge sites and enhanced electrical conductivity. Systematic investigation demonstrated that the MoS -CF composite showed high HER performance with a low overpotential of 92 mV in 1.0 m KOH and 155 mV in 0.5 m H SO at a current density of 10 mA cm . This work offers a new pathway for the rational design of MoS -based HER electrocatalysts.</description><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EoqVw5Yj8B1LWdp3HEfVBkUqRKJwjZ7NuA0kcOSlS_z2pCr3sSKuZkeZj7F7AWADIR9xRNZYgEpiEYXLBhkJLEago1JdsCMkkCkKtkgG7adsvAEhCpa7ZQIlIQ6L1kJVqxqfGZ67mC2cqvtk3jfMd5Xyebyl4L3DH18HMNf3n1W245GtTO1uab2q5dZ7P652p8egvCTvv0HSmPHQF8uUh925LNZ__uHLfFa6-ZVfWlC3d_emIfS7mH9NlsHp7fpk-rQIUEOkgozyOlULEhKzUEcaZocyYTBqweX-kpn6JtmoCCKEgKS2SQQAjYyRQIzY-9aJ3bevJpo0vKuMPqYD0iC09YkvP2PrAwynQ7LOK8rP9n5P6Bd7Dacw</recordid><startdate>20200326</startdate><enddate>20200326</enddate><creator>Jia, Xueying</creator><creator>Ren, Hongyuan</creator><creator>Hu, Hanbin</creator><creator>Song, Yu-Fei</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1309-0626</orcidid></search><sort><creationdate>20200326</creationdate><title>3D Carbon Foam Supported Edge-Rich N-Doped MoS 2 Nanoflakes for Enhanced Electrocatalytic Hydrogen Evolution</title><author>Jia, Xueying ; Ren, Hongyuan ; Hu, Hanbin ; Song, Yu-Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1075-bed8833ccc9ef257c8baebaab2a0fd2a025e0965f340c061e22fceac00a28ce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Xueying</creatorcontrib><creatorcontrib>Ren, Hongyuan</creatorcontrib><creatorcontrib>Hu, Hanbin</creatorcontrib><creatorcontrib>Song, Yu-Fei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Xueying</au><au>Ren, Hongyuan</au><au>Hu, Hanbin</au><au>Song, Yu-Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Carbon Foam Supported Edge-Rich N-Doped MoS 2 Nanoflakes for Enhanced Electrocatalytic Hydrogen Evolution</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2020-03-26</date><risdate>2020</risdate><volume>26</volume><issue>18</issue><spage>4150</spage><epage>4156</epage><pages>4150-4156</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Molybdenum disulfide (MoS ) is one of the most promising alternatives to the Pt-based electrocatalysts for the hydrogen evolution reaction (HER). However, its performance is currently limited by insufficient active edge sites and poor electron transport. Hence, enormous efforts have been devoted to constructing more active edge sites and improving conductivity to obtain enhanced electrocatalytic performance. Herein, the 3D carbon foam (denoted as CF) supported edge-rich N-doped MoS nanoflakes were successfully fabricated by using the commercially available polyurethane foam (PU) as the 3D substrate and PMo O clusters (denoted as PMo ) as the Mo source through redox polymerization, followed by sulfurization. Owing to the uniform distribution of nanoscale Mo sources and 3D carbon foam substrate, the as-prepared MoS -CF composite possessed well-exposed active edge sites and enhanced electrical conductivity. Systematic investigation demonstrated that the MoS -CF composite showed high HER performance with a low overpotential of 92 mV in 1.0 m KOH and 155 mV in 0.5 m H SO at a current density of 10 mA cm . This work offers a new pathway for the rational design of MoS -based HER electrocatalysts.</abstract><cop>Germany</cop><pmid>31750955</pmid><doi>10.1002/chem.201904669</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1309-0626</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2020-03, Vol.26 (18), p.4150-4156
issn 0947-6539
1521-3765
language eng
recordid cdi_crossref_primary_10_1002_chem_201904669
source Wiley
title 3D Carbon Foam Supported Edge-Rich N-Doped MoS 2 Nanoflakes for Enhanced Electrocatalytic Hydrogen Evolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Carbon%20Foam%20Supported%20Edge-Rich%20N-Doped%20MoS%202%20Nanoflakes%20for%20Enhanced%20Electrocatalytic%20Hydrogen%20Evolution&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Jia,%20Xueying&rft.date=2020-03-26&rft.volume=26&rft.issue=18&rft.spage=4150&rft.epage=4156&rft.pages=4150-4156&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201904669&rft_dat=%3Cpubmed_cross%3E31750955%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1075-bed8833ccc9ef257c8baebaab2a0fd2a025e0965f340c061e22fceac00a28ce03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/31750955&rfr_iscdi=true