Loading…
A Metal-Free Molecular Ferroelectric [4-Me-cyclohexylamine]ClO 4 Introduced by Boat and Chair Conformations of Cyclohexylamine
Organic ferroelectrics have received a great deal of interest due to their exclusive properties. However, organic ferroelectrics have not been fully explored, which hinders their practical application. Here, we presented a novel metal-free organic molecular ferroelectric [4-MCHA][ClO ] (1) (4-MCHA=t...
Saved in:
Published in: | Chemistry : a European journal 2024-01, Vol.30 (4), p.e202302671 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Organic ferroelectrics have received a great deal of interest due to their exclusive properties. However, organic ferroelectrics have not been fully explored, which hinders their practical application. Here, we presented a novel metal-free organic molecular ferroelectric [4-MCHA][ClO
] (1) (4-MCHA=trans-4-methylcyclohexylamine), which exhibits an above-room-temperature of 328 K. Strikingly, the single crystal structure analysis of 1 shows that the driving force of phase transition is related to the interesting chair-boat conformation change of 4-MCHA cation, in addition to the order-disorder transition of ClO
anion. Using piezoelectric response force microscopy (PFM), the presence of domains and the implemented polarization switching were clearly observed, which explicitly determined the presence of room-temperature ferroelectricity of 1. As far as we know, the ferroelectric phase transition mechanism attributed to the conformational change in a trans isomeric cation is very rare. This research enriched the path of designing ferroelectric materials and smart materials. |
---|---|
ISSN: | 0947-6539 1521-3765 |
DOI: | 10.1002/chem.202302671 |