Loading…
Theoretically Rational Designs of Transport Organic Semiconductors Based on Heteroacenes
A Marcus electron transfer theory coupled with an incoherent polaron hopping and charge diffusion model in combining with first‐principle quantum chemistry calculation was applied to investigating the effects of heteroatom on the intermolecular charge transfer rate for a series of heteroacene molecu...
Saved in:
Published in: | Chinese journal of chemistry 2008-06, Vol.26 (6), p.1005-1010 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A Marcus electron transfer theory coupled with an incoherent polaron hopping and charge diffusion model in combining with first‐principle quantum chemistry calculation was applied to investigating the effects of heteroatom on the intermolecular charge transfer rate for a series of heteroacene molecules. The influences of intermolecular packing and charge reorganization energy were discussed. It was found that the sulphur and nitrogen substituted heteroacenes were intrinsically hole‐transporting materials due to the reduced hole reorganization energy and the enhanced overlap between HOMOs. For the oxygen‐substituted heteroacene, it was found that both the electronic couplings and the reorganization energies for holes and electrons were comparative, indicating the application potential of ambipolar devices. Most interestingly, for the boron‐substituted heteroacenes, theoretical calculations predicted a promising electron‐transport material, which is rare for organic materials. These findings provide insights into rationally designing organic semiconductors with specific properties. |
---|---|
ISSN: | 1001-604X 1614-7065 |
DOI: | 10.1002/cjoc.200890179 |