Loading…
Topological Surface State of Bi 2 Se 3 Modified by Physisorption of n ‐Alkane
Recently, the interface between an organic molecular layer and a topological insulator (TI) surface (Org./TI interface) has been studied to explore the possibility of multifunctional TI devices with organic molecules. Nevertheless, understanding of the electronic structure of Org./TI interfaces is i...
Saved in:
Published in: | ChemNanoMat : chemistry of nanomaterials for energy, biology and more biology and more, 2023-03, Vol.9 (3) |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c848-aec41bedd9aabe1c7f29c58bbf1462c88a5e411ae8af6e386cbe146806bbd6293 |
---|---|
cites | cdi_FETCH-LOGICAL-c848-aec41bedd9aabe1c7f29c58bbf1462c88a5e411ae8af6e386cbe146806bbd6293 |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | ChemNanoMat : chemistry of nanomaterials for energy, biology and more |
container_volume | 9 |
creator | Moue, Rena Yamazaki, Hiroto Kitazawa, Tatsuya Yaji, Koichiro Yaguchi, Hiroshi Kuroda, Kenta Kondo, Takeshi Harasawa, Ayumi Iwahashi, Takashi Ouchi, Yukio Shin, Shik Kanai, Kaname |
description | Recently, the interface between an organic molecular layer and a topological insulator (TI) surface (Org./TI interface) has been studied to explore the possibility of multifunctional TI devices with organic molecules. Nevertheless, understanding of the electronic structure of Org./TI interfaces is insufficient. Especially, little is known about physisorption systems, where the interaction between adsorbed molecules and topological surface state (TSS) is weak. Here, we discuss an ideal physisorption system of an
n
‐alkane molecule,
n
‐tetratertacontane (TTC), and prototypical TI, Bi
2
Se
3
, in which the interaction between the molecule and TSS is the weakest one possible. Angle‐resolved photoemission spectroscopy results show that the energy of the Dirac cone (DC) energy band decreases by approximately 60 meV when the TTC layer is formed on Bi
2
Se
3
. The amount of energy reduction is consistent with the reduction in vacuum level at the TTC/Bi
2
Se
3
interface, valence states of Bi
2
Se
3
and the core levels of Bi
2
Se
3
observed by ultraviolet‐ and X‐ray photoemission spectroscopy. Therefore, no chemical interactions, such as charge transfer, occur at the TTC/Bi
2
Se
3
interface, but only a redistribution of charge density on the Bi
2
Se
3
surface occurs due to the Pauli repulsion between the electrons of the adsorbed TTC molecule and TSS. |
doi_str_mv | 10.1002/cnma.202200538 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cnma_202200538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_cnma_202200538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c848-aec41bedd9aabe1c7f29c58bbf1462c88a5e411ae8af6e386cbe146806bbd6293</originalsourceid><addsrcrecordid>eNpNkLtOwzAYRi0EElXpyuwXSPAlMc5YKi6VioqUDGzRb-c3GNI4isOQjUfgGXkSiECI6fuGozMcQs45Szlj4sJ2B0gFE4KxXOojshC8KBJViMfjf_-UrGJ8YYxxneWcyQXZV6EPbXjyFlpavg0OLNJyhBFpcPTKU0FLpJLeh8Y7jw01E314nqKPYehHH7oZ6-jn-8e6fYUOz8iJgzbi6neXpLq5rjZ3yW5_u92sd4nVmU4AbcYNNk0BYJDbSycKm2tjHM-UsFpDjhnngBqcQqmV_aYypZkyplGikEuS_mjtEGIc0NX94A8wTDVn9RyknoPUf0HkF1y5VNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Topological Surface State of Bi 2 Se 3 Modified by Physisorption of n ‐Alkane</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Moue, Rena ; Yamazaki, Hiroto ; Kitazawa, Tatsuya ; Yaji, Koichiro ; Yaguchi, Hiroshi ; Kuroda, Kenta ; Kondo, Takeshi ; Harasawa, Ayumi ; Iwahashi, Takashi ; Ouchi, Yukio ; Shin, Shik ; Kanai, Kaname</creator><creatorcontrib>Moue, Rena ; Yamazaki, Hiroto ; Kitazawa, Tatsuya ; Yaji, Koichiro ; Yaguchi, Hiroshi ; Kuroda, Kenta ; Kondo, Takeshi ; Harasawa, Ayumi ; Iwahashi, Takashi ; Ouchi, Yukio ; Shin, Shik ; Kanai, Kaname</creatorcontrib><description>Recently, the interface between an organic molecular layer and a topological insulator (TI) surface (Org./TI interface) has been studied to explore the possibility of multifunctional TI devices with organic molecules. Nevertheless, understanding of the electronic structure of Org./TI interfaces is insufficient. Especially, little is known about physisorption systems, where the interaction between adsorbed molecules and topological surface state (TSS) is weak. Here, we discuss an ideal physisorption system of an
n
‐alkane molecule,
n
‐tetratertacontane (TTC), and prototypical TI, Bi
2
Se
3
, in which the interaction between the molecule and TSS is the weakest one possible. Angle‐resolved photoemission spectroscopy results show that the energy of the Dirac cone (DC) energy band decreases by approximately 60 meV when the TTC layer is formed on Bi
2
Se
3
. The amount of energy reduction is consistent with the reduction in vacuum level at the TTC/Bi
2
Se
3
interface, valence states of Bi
2
Se
3
and the core levels of Bi
2
Se
3
observed by ultraviolet‐ and X‐ray photoemission spectroscopy. Therefore, no chemical interactions, such as charge transfer, occur at the TTC/Bi
2
Se
3
interface, but only a redistribution of charge density on the Bi
2
Se
3
surface occurs due to the Pauli repulsion between the electrons of the adsorbed TTC molecule and TSS.</description><identifier>ISSN: 2199-692X</identifier><identifier>EISSN: 2199-692X</identifier><identifier>DOI: 10.1002/cnma.202200538</identifier><language>eng</language><ispartof>ChemNanoMat : chemistry of nanomaterials for energy, biology and more, 2023-03, Vol.9 (3)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c848-aec41bedd9aabe1c7f29c58bbf1462c88a5e411ae8af6e386cbe146806bbd6293</citedby><cites>FETCH-LOGICAL-c848-aec41bedd9aabe1c7f29c58bbf1462c88a5e411ae8af6e386cbe146806bbd6293</cites><orcidid>0000-0003-2684-030X ; 0000-0002-8437-4557 ; 0000-0002-3912-5172 ; 0000-0002-0151-0876 ; 0000-0002-3952-5491 ; 0000-0003-2604-993X ; 0000-0002-2505-9362 ; 0000-0002-0721-1316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Moue, Rena</creatorcontrib><creatorcontrib>Yamazaki, Hiroto</creatorcontrib><creatorcontrib>Kitazawa, Tatsuya</creatorcontrib><creatorcontrib>Yaji, Koichiro</creatorcontrib><creatorcontrib>Yaguchi, Hiroshi</creatorcontrib><creatorcontrib>Kuroda, Kenta</creatorcontrib><creatorcontrib>Kondo, Takeshi</creatorcontrib><creatorcontrib>Harasawa, Ayumi</creatorcontrib><creatorcontrib>Iwahashi, Takashi</creatorcontrib><creatorcontrib>Ouchi, Yukio</creatorcontrib><creatorcontrib>Shin, Shik</creatorcontrib><creatorcontrib>Kanai, Kaname</creatorcontrib><title>Topological Surface State of Bi 2 Se 3 Modified by Physisorption of n ‐Alkane</title><title>ChemNanoMat : chemistry of nanomaterials for energy, biology and more</title><description>Recently, the interface between an organic molecular layer and a topological insulator (TI) surface (Org./TI interface) has been studied to explore the possibility of multifunctional TI devices with organic molecules. Nevertheless, understanding of the electronic structure of Org./TI interfaces is insufficient. Especially, little is known about physisorption systems, where the interaction between adsorbed molecules and topological surface state (TSS) is weak. Here, we discuss an ideal physisorption system of an
n
‐alkane molecule,
n
‐tetratertacontane (TTC), and prototypical TI, Bi
2
Se
3
, in which the interaction between the molecule and TSS is the weakest one possible. Angle‐resolved photoemission spectroscopy results show that the energy of the Dirac cone (DC) energy band decreases by approximately 60 meV when the TTC layer is formed on Bi
2
Se
3
. The amount of energy reduction is consistent with the reduction in vacuum level at the TTC/Bi
2
Se
3
interface, valence states of Bi
2
Se
3
and the core levels of Bi
2
Se
3
observed by ultraviolet‐ and X‐ray photoemission spectroscopy. Therefore, no chemical interactions, such as charge transfer, occur at the TTC/Bi
2
Se
3
interface, but only a redistribution of charge density on the Bi
2
Se
3
surface occurs due to the Pauli repulsion between the electrons of the adsorbed TTC molecule and TSS.</description><issn>2199-692X</issn><issn>2199-692X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkLtOwzAYRi0EElXpyuwXSPAlMc5YKi6VioqUDGzRb-c3GNI4isOQjUfgGXkSiECI6fuGozMcQs45Szlj4sJ2B0gFE4KxXOojshC8KBJViMfjf_-UrGJ8YYxxneWcyQXZV6EPbXjyFlpavg0OLNJyhBFpcPTKU0FLpJLeh8Y7jw01E314nqKPYehHH7oZ6-jn-8e6fYUOz8iJgzbi6neXpLq5rjZ3yW5_u92sd4nVmU4AbcYNNk0BYJDbSycKm2tjHM-UsFpDjhnngBqcQqmV_aYypZkyplGikEuS_mjtEGIc0NX94A8wTDVn9RyknoPUf0HkF1y5VNs</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Moue, Rena</creator><creator>Yamazaki, Hiroto</creator><creator>Kitazawa, Tatsuya</creator><creator>Yaji, Koichiro</creator><creator>Yaguchi, Hiroshi</creator><creator>Kuroda, Kenta</creator><creator>Kondo, Takeshi</creator><creator>Harasawa, Ayumi</creator><creator>Iwahashi, Takashi</creator><creator>Ouchi, Yukio</creator><creator>Shin, Shik</creator><creator>Kanai, Kaname</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2684-030X</orcidid><orcidid>https://orcid.org/0000-0002-8437-4557</orcidid><orcidid>https://orcid.org/0000-0002-3912-5172</orcidid><orcidid>https://orcid.org/0000-0002-0151-0876</orcidid><orcidid>https://orcid.org/0000-0002-3952-5491</orcidid><orcidid>https://orcid.org/0000-0003-2604-993X</orcidid><orcidid>https://orcid.org/0000-0002-2505-9362</orcidid><orcidid>https://orcid.org/0000-0002-0721-1316</orcidid></search><sort><creationdate>202303</creationdate><title>Topological Surface State of Bi 2 Se 3 Modified by Physisorption of n ‐Alkane</title><author>Moue, Rena ; Yamazaki, Hiroto ; Kitazawa, Tatsuya ; Yaji, Koichiro ; Yaguchi, Hiroshi ; Kuroda, Kenta ; Kondo, Takeshi ; Harasawa, Ayumi ; Iwahashi, Takashi ; Ouchi, Yukio ; Shin, Shik ; Kanai, Kaname</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c848-aec41bedd9aabe1c7f29c58bbf1462c88a5e411ae8af6e386cbe146806bbd6293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moue, Rena</creatorcontrib><creatorcontrib>Yamazaki, Hiroto</creatorcontrib><creatorcontrib>Kitazawa, Tatsuya</creatorcontrib><creatorcontrib>Yaji, Koichiro</creatorcontrib><creatorcontrib>Yaguchi, Hiroshi</creatorcontrib><creatorcontrib>Kuroda, Kenta</creatorcontrib><creatorcontrib>Kondo, Takeshi</creatorcontrib><creatorcontrib>Harasawa, Ayumi</creatorcontrib><creatorcontrib>Iwahashi, Takashi</creatorcontrib><creatorcontrib>Ouchi, Yukio</creatorcontrib><creatorcontrib>Shin, Shik</creatorcontrib><creatorcontrib>Kanai, Kaname</creatorcontrib><collection>CrossRef</collection><jtitle>ChemNanoMat : chemistry of nanomaterials for energy, biology and more</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moue, Rena</au><au>Yamazaki, Hiroto</au><au>Kitazawa, Tatsuya</au><au>Yaji, Koichiro</au><au>Yaguchi, Hiroshi</au><au>Kuroda, Kenta</au><au>Kondo, Takeshi</au><au>Harasawa, Ayumi</au><au>Iwahashi, Takashi</au><au>Ouchi, Yukio</au><au>Shin, Shik</au><au>Kanai, Kaname</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Surface State of Bi 2 Se 3 Modified by Physisorption of n ‐Alkane</atitle><jtitle>ChemNanoMat : chemistry of nanomaterials for energy, biology and more</jtitle><date>2023-03</date><risdate>2023</risdate><volume>9</volume><issue>3</issue><issn>2199-692X</issn><eissn>2199-692X</eissn><abstract>Recently, the interface between an organic molecular layer and a topological insulator (TI) surface (Org./TI interface) has been studied to explore the possibility of multifunctional TI devices with organic molecules. Nevertheless, understanding of the electronic structure of Org./TI interfaces is insufficient. Especially, little is known about physisorption systems, where the interaction between adsorbed molecules and topological surface state (TSS) is weak. Here, we discuss an ideal physisorption system of an
n
‐alkane molecule,
n
‐tetratertacontane (TTC), and prototypical TI, Bi
2
Se
3
, in which the interaction between the molecule and TSS is the weakest one possible. Angle‐resolved photoemission spectroscopy results show that the energy of the Dirac cone (DC) energy band decreases by approximately 60 meV when the TTC layer is formed on Bi
2
Se
3
. The amount of energy reduction is consistent with the reduction in vacuum level at the TTC/Bi
2
Se
3
interface, valence states of Bi
2
Se
3
and the core levels of Bi
2
Se
3
observed by ultraviolet‐ and X‐ray photoemission spectroscopy. Therefore, no chemical interactions, such as charge transfer, occur at the TTC/Bi
2
Se
3
interface, but only a redistribution of charge density on the Bi
2
Se
3
surface occurs due to the Pauli repulsion between the electrons of the adsorbed TTC molecule and TSS.</abstract><doi>10.1002/cnma.202200538</doi><orcidid>https://orcid.org/0000-0003-2684-030X</orcidid><orcidid>https://orcid.org/0000-0002-8437-4557</orcidid><orcidid>https://orcid.org/0000-0002-3912-5172</orcidid><orcidid>https://orcid.org/0000-0002-0151-0876</orcidid><orcidid>https://orcid.org/0000-0002-3952-5491</orcidid><orcidid>https://orcid.org/0000-0003-2604-993X</orcidid><orcidid>https://orcid.org/0000-0002-2505-9362</orcidid><orcidid>https://orcid.org/0000-0002-0721-1316</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2199-692X |
ispartof | ChemNanoMat : chemistry of nanomaterials for energy, biology and more, 2023-03, Vol.9 (3) |
issn | 2199-692X 2199-692X |
language | eng |
recordid | cdi_crossref_primary_10_1002_cnma_202200538 |
source | Wiley-Blackwell Read & Publish Collection |
title | Topological Surface State of Bi 2 Se 3 Modified by Physisorption of n ‐Alkane |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A07%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Surface%20State%20of%20Bi%202%20Se%203%20Modified%20by%20Physisorption%20of%20n%20%E2%80%90Alkane&rft.jtitle=ChemNanoMat%20:%20chemistry%20of%20nanomaterials%20for%20energy,%20biology%20and%20more&rft.au=Moue,%20Rena&rft.date=2023-03&rft.volume=9&rft.issue=3&rft.issn=2199-692X&rft.eissn=2199-692X&rft_id=info:doi/10.1002/cnma.202200538&rft_dat=%3Ccrossref%3E10_1002_cnma_202200538%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c848-aec41bedd9aabe1c7f29c58bbf1462c88a5e411ae8af6e386cbe146806bbd6293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |